
A Principled, Complete, and Efficient Representation
of C++

Gabriel Dos Reis1∗, and Bjarne Stroustrup2

1 Texas A&M University,
College Station, TX-77843, USA

gdr@cs.tamu.edu

2 Texas A&M University,
College Station, TX-77843, USA

bs@cs.tamu.edu

Abstract

We present a systematic representation of C++, called IPR, for complete seman-
tic analysis and semantics-based transformations. We describe the ideas and design
principles that shaped the IPR. In particular, we describe how general type-based
unification is key to minimal compact representation, fast type-safe traversal, and
scalability. The IPR is general enough to handle real-world programs involving many
translation units, archaic programming styles, and generic programming using likely
C++0x extensions that affect the type system. The difficult issue of how to represent
irregular (ad hoc) features in a systematic (non ad hoc) manner is among key contri-
butions of this paper. The IPR can represent all of C++ with just slightly less than
200 node types; to compare the ISO C++ grammar has over 700 productions. Finally,
we report impacts of this work on existing C++ compilers.

1 Introduction

The C++ programming language [11] is a general-purpose programming language, with bias
toward system programming. It has, for the last two decades, been widely used in diverse
application areas [20]. Beside traditional applications of general-purpose programming lan-
guages, it is being used in high-performance computing, embedded systems, safety-critical
systems (such as, airplane controls), space explorations, etc. Consequently, the demand for
static analysis and advanced semantics-based transformations of C++ programs is pressing.
Dozens of analysis frameworks for C++ and for combination of C++ and code in other
languages (typically C and Fortran) exist [1, 15, 16], but none handles the complete C++
language. Most are specialized to particular applications, and few (if any) can claim to
both handle types and be portable across compilers.

This paper discusses a complete, efficient and direct representation of C++ implemented
in C++, designed as part of a general analysis and transformation infrastructure, called
The Pivot, being developed at Texas A&M University.

The IPR does not handle macros before their expansion in the preprocessor. With
that caveat, we currently represent every C++ construct completely and directly. Note
that by “completely” we mean that we capture all the type information, all the scope and
overload information, and are able to reproduce input line-for-line. We capture templates
(specializations and all) before instantiation — as is necessary to utilize the information
represented by “concepts” [5, 10]. To be able to do this for real-world programs, we also

∗Correspondence to: Postal Address(es) and Tel(fax) number(s).



handle implementation-specific extensions. We generate IPR from two compiler front ends
[6, 9].

Our emphasis on completeness stems from a desire to provide a shared tool infrastruc-
ture. Complete representation of C++ is difficult, especially if one does not want to expose
every irregular detail to every user. Some complexity is inherent, stemming from C++’s
support of a wide range of programming styles; some is incidental, stemming from a long
history of evolution under a wide range of real-world pressures; some originated in the ear-
liest days of C. Independently of the sources of the complexity, a representation that aims
to be general — aims to be a starting point for essentially every type of analysis and trans-
formation — must cope with it. Each language feature — however obscure or advanced —
not handled implies lack of support for some sub-community.

Our contribution is to engineer a small and efficient library with a regular and the-
oretically well-founded structure for completely representing a large irregular, real-world
language. The IPR library has been developed side by side with a formalism to express the
static semantics of C++.

2 Design Rules

The goals of generality directly guide the design criteria of IPR:

1. Complete — represents all Standard C++ constructs, but not macros before expan-
sions, not other programming languages.

2. General — suitable for every kind of application, rather than targeted to a particular
application area.

3. Regular — does not mimic C++ language irregularities; general rules are used, rather
than long lists of special cases.

4. Fully typed — every IPR node has a type.

5. Minimal — its representation has no redundandent values and traversal involves no
redundant dynamic indirections.

6. Compiler neutral — not tied to a particular compiler.

7. Scalable — able to handle hundreds of thousands of lines of code on common machines
(such as our laptops).

Obviously, we wouldn’t mind supporting languages other than C++, and a framework
capable of handling systems composed out of parts written in (say) C++, C, Fortran, Java,
and Python would be very useful to many. However, we do not have the resources to do
that well, nor do we know if that can be done well. That is, we do not know whether it can
be done without limiting the language features used in the various languages, limiting the
kinds of analysis supported by the complete system, and without replicating essentially all
representation node and analysis facilities for each language. These questions are beyond
the scope of this paper. It should be easy to handle at least large subsets of dialects. In
this context, C is a set of dialects. Most C++ implementations are de facto dialects.

Within IPR, C++ programs are represented as sets of graphs. For example, consider
the declaration a function copy:



int∗ copy(const int∗ b, const int∗ e, int∗ out);

To represent this, we must create nodes for the various entities involved, such as types,
identifiers, the function, and function parameters. parameters. Some information is implicit
in the C++ syntax. For example, that declaration will occur in a scope, may overload other
copy functions, and this copy may throw exceptions. The IPR makes all such information
easily accessible to a user. For example, the IPR representation of copy contains the
exception specification throw(...), a link to the enclosing scope, and links to other entities
called copy in that scope.

The types int∗ and const int∗ are both mentioned twice. The IPR library unifies
nodes, so that a single node represents all ints in a program, and another node represents
all const ints in a program, referring to the int node for its int part. The implication of
this is that we can make claims of minimality of the size of the representation and of the
number of nodes we have to traverse to gather information. It also implies that the IPR
is not “just a dumb data structure”: it is a program that performs several fundamental
services as it creates the representation of a program. Such services would otherwise have
had to be done by each user or by other services. For example, the IPR implements simple
and efficient automatic garbage collection.

The design of IPR is not derived from a compiler’s internal data structures. In fact, a
major aim of the IPR is to be compiler independent. The representation within compilers
have evolved over years to serve diverse requirements, such as error detection and reporting,
code generation, providing information for debuggers and browsers, etc. The IPR has only
one aim: to allow simple traversals with access to all information as needed and in a uniform
way. By simple traversal, we mean that the complexity of a traversal is proportional to the
analysis or transform performed, rather than proportional to the complexity of the source
language. Because the IPR includes full type information, full overload resolution, and full
understanding of template specialization, it can be generated only by a full C++ compiler.
That is, the popular techniques relying on just a parser (syntax analyser or slightly enhanced
syntax analyser) are insufficiently general: They don’t generate sufficient information for
complete representation. The IPR is designed so as to require only minimal invasion into a
compiler to extract the information it needs.

The IPR is a fully-typed abstract-syntax tree. This is not the optimal data structure
for every kind of analysis and transformation. It is, however, a representation from which
a specialized representation (e.g. a flow graph or an linkage specification) can be generated
far more easily than through conventional parsing or major surgery to compiler internals.
In particular, we are developing a high-level flow graph representation that can be held in
memory together with the AST and share type, scope, and variable information.

3 Representation

Representing C++ completely is equivalent to formalizing its static semantics. Basically,
there is a one-to-one correspondence between a semantic equation and an IPR node. The
IPR does not just represent the syntax of C++ entities. The IPR essentially represents a
superset of C++ that is far more regular than C++. Semantic notions such as overload-sets
and scopes are fundamental parts of the library and types play a central role. In fact every
IPR entity has a type, even types. Thus, in addition to supporting type-based analysis and
transformation, the IPR supports concept-based analysis and transformation.



3.1 Nodes

Here, we do not attempt to present every IPR node. Instead, we present only as much
of IPR as is needed to understand the key ideas and underlying principles. Each node
represents a fundamental part of C++ so that each piece of C++ code can be represented
by a minimal number of nodes (and not, for example, by a number of nodes determined by
a parsing strategy).

3.2 Node design

The IPR library provides users with classes to cover all aspects of Standard C++. Those
classes are designed as a set of hierarchies, and can be divided into two major groups:

1. abstract classes, providing interfaces to representations

2. concrete classes, providing implementations.

The interface classes support non-mutating operations only; these operations are pre-
sented as virtual functions. Currently, traversals use the Visitor Design Pattern [8] or an
iterator approach.

IPR is designed to yield information in the minimum number of indirections. Conse-
quently, every indirection in IPR is semantically significant. That is, an indirection refers
to 0, 2 or more possibilities of different kinds of information, but not 1. For if there was
only 1 kind of information, that kind of information would be accessed directly. Therefore
an if-statement, a switch, or an indirect function call is needed for each indirection. We
use virtual function calls to implement indirections. In performance, that is equivalent to a
switch plus a function call [12]. Virtual functions are preferable for simplicity, code clarity,
and maintenance.

The obvious design of such class hierarchies is an elaborate lattice relying on interfaces
presented as abstract virtual base classes, and implementation class hierarchies, with nice
symmetry between them. This was indeed our first design. However, that led to hard-to
maintain code (prone to lookup errors and problems with older compilers), overly large
objects (containing the internal links needed to implement virtual base classes), and slow
(due to overuse of virtual functions).

The current design (described below) relies on composition of class hierarchies from
templates, minimizing the number of indirections (and thus object size), and the number
of virtual function calls. To minimize the number of objects and to avoid logically unneces-
sary indirections, we use member variables, rather than separate objects accessed through
pointers, whenever possible.

Interfaces Type expressions and classic expressions can be seen as the result of unary,
or binary, or ternary node constructors. So, given suitable arguments, we need just three
templates to generate every IPR node for “pure C++”. In addition, we occasionally need
a fourth argument to handle linkage to non-C++ code, requiring a quaternary node. For
example, every binary node can be generated from this template:

template<class Cat = Expr, // kind (category) of node
class First = const Expr&,
class Second = const Expr&>

struct Binary : Cat {
typedef Cat Category;



typedef First Arg1_type;
typedef Second Arg2_type;
virtual Arg1_type first() const = 0;
virtual Arg2_type second() const = 0;

};

Binary is the base class for all nodes constructed with two arguments, such as an array
type (node) or an addition expression (node). The first template parameter Cat specifies the
kind (category) of the node: (classic) expression, type, statement, or declaration. The other
two template parameters specify the type of arguments expected by the node constructor.
Most node constructors take expression arguments, so we provide the default value Expr.
The functions first() and second() provide generic access to data.

Note how Binary is derived from its first argument (Cat). That’s how Binary gets its
set of operations and its data members: It inherits them from its argument. This technique
is called “the curiously recurring template pattern” [4] or “the Barton-Nackman trick”; it
has been common for avoiding tedious repetition and unpleasant loopholes in type systems
for more than a decade (it is mentioned in the ARM [7], but rarely fails to surprise). The
strategy is systematically applied in the IPR library, leading to linearization of the class
hierarchy (see Figure 1).

Node

Expr

Stm t

D ecl

Var

impl::Expr¡T¿

impl::Stm t¡T¿

impl::D ecl¡T¿

impl::Var

T=Var

Figure 1: Current design of the IPR library

A specific interface class is then derived from the appropriate base (Unary, Binary, or
Tertiary). For example:

struct Array
: Binary<Category<array_cat,Type>, const Type&> {

Arg1_type element_type() const { return first(); }
Arg2_type bound() const { return second(); }

};

That is, an Array is a Type taking two arguments (a Type and an Expr) and a return type
(a Type). Array’s two member functions provide the obvious interface: element type()
returns the type of an element and bound() returns the number of elements. Please note
that the functions element type() and bound() are themselves not virtual functions; they
are simple “forwarding” inline functions, therefore induce no overhead.

The category argument Category<array cat,Type> exposes an implementation detail.
The category is Type (i.e., an array is a type), but to optimize comparisons of types, we



associate an integer array cat with the Array type. Logically, it would be better not to
expose this implementation detail, but avoiding that would involve either a per-node mem-
ory overhead storing the array cat value or a double dispatch in every node comparison.
We introduced array cat after finding node comparison to be our main performance bot-
tleneck. So far, we have found no systematic technique for hiding array cat that doesn’t
compromise our aim to keep the IPR minimal.

Concrete Representations Each interface class has a matching implementation class.
Like the interface classes, the (concrete) implementation classes are generated from tem-
plates. In particular, impl::Binary is the concrete implementation corresponding to the
interface ipr::Binary:

template<class Interface>
struct impl::Binary : Interface {
typedef typename Interface::Arg1_type Arg1_type;
typedef typename Interface::Arg2_type Arg2_type;
struct Rep {
Arg1_type first;
Arg2_type second;
Rep(Arg1_type f, Arg2_type s)
: first(f), second(s) { }

};
Rep rep;

Binary(const Rep& r) : rep(r) { }
Binary(Arg1_type f, Arg2_type s) : rep(f, s) { }

// Override ipr::Binary<>::first.
Arg1_type first() const { return rep.first; }

// Override ipr::Binary<>::second.
Arg2_type second() const { return rep.second; }

};

The impl::Binary implementation template specifies a representation, constructors,
and access functions (first() and second()) for the Interface. Given impl::Binary,
we simply define Array as a typedef for the implementation type:

typedef impl::Binary<impl::Type<ipr::Array> > Array;

The Array type is generated as an instantiation of the Binary template.

3.3 Sharing

By node sharing, we mean that two nodes that represent the same entity shall have the same
address. In particular, node sharing implies that if a node constructor is presented twice
with equal lists of arguments, it will yield the same node. If node sharing is implemented
for a class, that class is said to be unified. Since a user-defined type (classes or enums)
can be defined only once in a given translation unit, sharing of nodes is suggested by C++
language rules. Every IPR node can be unified; exactly which are unified is a design choice
related to performance (of the IPR itself and of applications). This can be used to tune
IPR.



Implementing node sharing is easy for named types, but less straightforward for built-
in types and types constructed out of other types using composition operators (e.g., int,
double (*)(double), and vector<Shape*>). The problem arise because such types are
not introduced by declarations. They can be referred to without being explicitly introduced
into a program. For example, we can say int* or take the address of a double and implicitly
introduce double* into our set of types. Node sharing for such types implies maintenance
of tables that translate arguments to constructed nodes. Since an expression does not have
a name, unifying expression nodes share this problem (and its solution) with nodes for
unnamed types.

We can define node sharing based on at least two distinct criteria: syntactic equivalence,
or semantic equivalence. Node sharing based on syntactic equivalence has implications on
the meaning of overloaded declarations; two declarations might appear overloaded even
though only the spelling of their types differs. For example, the following function template
declarations are possibly overloads whereas Standard C++ rules state they declare the same
function.

template<typename T, typename U>
void bhar(T, U);

template<typename U, typename T>
void bhar(U, T);

The reason is that for templates, only the positions of template-parameters (and their kinds)
are relevant. Normally, we do not care whether the name of a template-parameter is T or U;
however, in real programs, people often use meaningful names, such as ForwardIterator
instead of T.

3.4 Effects of unification

Space is time. It should be obvious that, because nodes are not repeatedly created to
represent the same type, node sharing leads to reduced memory usage and less scattering
in the address space (and therefore few cache misses.) Experiments with the classic first
program

#include <iostream>
int main()
{
std::cout << "Hello, World" << std::endl;

}

based on GCC-3.4.2 — at the time we started the IPR project — reveal that, in non-sharing
mode, there are 60855 calls to type constructors; out of which we have

1. 60% for named types (only less than 1% are syntactically distinct),

2. 17% for pointer types,

3. 11% for const-qualified types,

Due to curiosities in the GCC compiler infrastructure, we cannot get precise counting of
nodes, so the above are approximates (±5%). However, the GCC representation was about
32 times the size of the IPR representation. The “Hello, World!” program is useful be-
cause it drags in so much relatively advanced code though its #include. However, even



for medium-sized programs we must multiply the figures by at least 100 to get realistic
measures, and then our savings in time and space begin to appear significant. Once we
start to represent multiple translation units simultaneously, unification becomes a critical
component of scalability.

Inspired by our design and our measurements, GCC has switched to a unified internal
representation of types.

For program analysis that requires type comparison, node sharing offers time efficiency
because type comparison is reduced to pointer comparison. This is significant because
many forms of analysis (as well as the IPR itself) basically boil down to “traverse the
program representation doing a lot of comparisons along the way to decide which nodes
need attention”. With node sharing, those comparisons are simple pointer comparisons.
Without node sharing they are recursive double dispatch operations. Obviously, the time
gained sharing nodes should be weighted against the overhead of building and using hash
tables to be able to find existing nodes when you make a new node.

In the context of program transformation, another advantage of node sharing is con-
sistency. Since there can be only one node for a type named Foo, we never need to walk
through the whole graph to modify the properties of all Foos. That is an important prop-
erty when merging separately compiled translation units, doing whole-program analysis,
and doing systematic substitutions. For example, with a single substitution, we can replace
all uses of a type, say int[], with another type, say vector<int>, in a whole translation
unit.

4 Details

“The devil is in the details.” If C++ had been designed yesterday with “simple complete
representation” as a major goal, representing it would have relatively been easy. Basically,
the previous section would have been the end of the story. However, elements of C++
were designed more than 30 years ago (for pre-K&R C) and much (both standard and
non-standard) have been added since. This seriously complicates the design of a complete
representation for C++. However, these “details” must be dealt with to produce a tool,
rather than a toy. If you feel like commenting “C++ is just too complicated, let’s work on
tools for another language” then think what our favorite language might look like after 20
years of serious industrial use and also consider the number of people that will benefit from
extra work required for a mature language.

Dealing with “details” has been much more than 50% of the total design effort. The
“details” are plentiful and irregular. However, we must fit them into a more general frame-
work so that the IPR user do not need to remember (and handle) a long list of special
cases. In other words, we cannot take an ad hoc approach to dealing with ad hoc language
features. We must abstract the many “details” into a few IPR constructs.

4.1 Lexical and home scopes

A name can simultaneously belong to more than one scope. For example:

int f(int i) {
extern int g(int); // g is global
return g(i);

}



class A {
friend void f(A) { } // f is in enclosing scope; visible

// only through ‘‘argument dependent’’
// name lookup

};

namespace N {
extern "C" void bar(); // bar is global

}

In the function f(int), the locally declared function g(int) is visible only in the local
block established by the body of f(int). However, it really belongs to the global scope;
that is, there is no nested or local functions in C or C++. The function f(A) defined in
the class A really belongs to the enclosing namespace scope of A. However, an ordinary
name lookup will not find it (unless a matching declaration is also available in that scope,
which is not the case here). That function is visible only through a special name lookup
(argument dependent name lookup) that considers the syntactic form of a call and the type
of the arguments. The third example declares the function bar() as having a “C” language
calling convention, consequently it really belongs to the global scope. However name lookup
will not find it in the global scope – it is visible only the scope of N. Note also that there
can be only one such function in the whole program named bar with that same type and
“C” calling convention.

Note that the first example is also C and fairly common in C-style C++ code.
The general solution to all of these problems (and more) is that every declaration has

a lexical scope and some also have a home scope. All information relating to the entity
declared can be found though its entry in its home scope.

struct Decl : Stmt {
// ...
virtual const Name& name() const = 0;
virtual const Region& home_region() const = 0;
virtual const Region& lexical_region() const = 0;
// ...

};

The lexical region is the scope in which the declaration appear in the source text. The
home region the scope in which the declaration really belongs to according to the C++
rules. For most cases, those two regions are the same. However, for each of the examples
above the home region and lexical region differ.

4.2 Overloading, specialization, etc.

Often, several declarations are related. For example, a function can have several declarations
(which must match) and several functions in a scope can have the same name (so that
they must be considered together for overload resolution). Of course, IPR must keep the
information that the programmer provided (the many declarations), but it must also present
a single entity (the function, the variable, the template) to the user unless the user express
an interest in “the details”. Consider:

void print(double);

void f(int i) { print(i); }



void print(int);

void g(int i) { print(i); }

void print(double d) { cout << d; }

The IPR represents different functions with the same name in the same scope as overload
sets, but different declarations of the same function are linked to the first declaration of
that function: The Decl class handles all linked declarations with just three functions:

struct Decl : Stmt {
// ...
virtual const Decl& master() const = 0;
virtual const Sequence<Decl>& decl_set() const = 0;
virtual const Decl& defining_decl() const = 0;
// ...

};

The master() is the first declaration of a given name encountered. The decl set() is
the set of all declarations of that name. The defining decl() is the defining declaration.

Both the primary declaration and all the secondary declarations are placed in their
proper scopes and their proper places in that scope. This is essential: Note how you can
change the meaning of the program fragment above by reordering the declarations. This is
unfortunate, but follows directly from the C++ standard and is used in real code.

The distinction between an overload set and a linked set of declarations of the same
entity also directly reflects the C++ distinction between overloading and specialization.

4.3 Lowering

Even at the level of an AST, different users want different levels of representation. We have
already “lowered” the representation of the program by expanding macros, so that the IPR
represents a compiler’s view of a program, rather than the view of a programmer looking
at a screen. This is an important design decision for IPR and not one that’s always ideal.
However, we don’t think we had much choice. Macros are inherently irregular, so that
distinctions among fundamental notions — such as, declaration, statement, and expression
— are often blurred by macros.

The next major design choice is whether to retain typedef names. For example:

typedef int Length;
Length x;

Is x a Length or an int. According to C++, it’s an int because a typedef name is only
an alias. However, Length has a meaning to some programmer and some forms of analysis
assign meaning to typedef names (and to other aliases). “Other aliases” include namespace
aliases, using declarations, and (in C++0x) template aliases. It is important that the IPR
implement a uniform policy vis a vis aliases.

Finally, there is the issue of how to represent member access and uses of overloaded
operators. Consider:

void f(T x, TT p) {
++x;
T(x) = 5;
p->f();

}



We could represent ++x as a use of operator ++ or as call node for the function operator++().
The first alternative is the user’s view, the syntactic view. The latter view is “lowered” to
reflect a semantic view. For example, lowering to a uniform function call notation simplifies
programs concerned with program execution.

It is important to have a uniform policy on this kind of examples. Several times we
(as have others) thought we had a free choice in such decisions for a specific operator,
language construct, or type. In fact, we do not. Consider the case where the example above
is a template function with T as an unconstrained template parameter. In that case, we
cannot even know whether T(x) is a cast or a declaration of a variable x with redundant
parentheses! Any uniform policy in a system that fully handles templates must retain the
syntactic view – any lowering will be premature. Also, the syntactic view is the only one
that allows re-generation of the user’s code without risk of subtle semantic changes. For
example, if we transformed ++x to a uniform call syntax (say) operator++(&x), we would
not (without additional information) know whether the user wrote ++x or x.operator++()
or operator++(&x).

So, to preserve information and thereby support a larger set of applications, the IPR
doesn’t lower by default. If you want lowering, you can ask IPR to do so at creation time.
This works well, but even that may be a premature optimization and we are considering
replacing the option to lower by a lowering IPR-to-IPR tool.

Note that before lowering, IPR will take a purely syntactic view of aliases. For example:

typedef int Length;
// ...
void f(Length);
void f(int);

Before lowering, the IPR – like a naive human reader – will think that there are two functions
(syntactic equivalence) whereas after lowering it will realize that there really (according to
C++) is only one. The distinction can be useful for some forms of analysis.

4.4 Proprietary extensions

Most compiler providers have a host of proprietary language extensions that the average
end user doesn’t see. However, the deep internals of most standard libraries are littered
with them. Try representing the innocent-looking ”Hello, world!” program:

#include<iostream>

int main()
{

std::cout << "Hello, world!";
}

To do this, we have to handle dozens of proprietary extensions. Such extensions (of course)
differ from provider to provider and it is not unusual that they vary from release to release.
They tend to be plentiful in the lowest levels of code (OS interfaces, I/O, memory man-
agement, etc.), so the standard headers included to compile ”Hello, world!” is a good place
to look for them. For example, in <iostream> from GCC-4.3.0, we find five extensions in
what should have been a simple one-line function declaration:

extern int
snprintf (char *__restrict __s, size_t __maxlen,



__const char *__restrict __format, ...)
throw () __attribute__ ((__format__ (__printf__, 3, 4)));

Often, such extensions are hidden from the programmers by wrapping them in macros, but
the IPR sees through that. To deal with this, we have temporarily been reduced to the “ad
hockery” of simply adding IPR nodes to represent the proprietary extensions, usually one
new node per extension. Given the rate of change in these extensions, this approach is not
sustainable. The ”Hello, world!” program is portable and by default the IPR for it should
also be. The solution is to modularize the program so that we don’t represent “details”
of <iostream> in the IPR unless the user explicitly requests it. Such requests may be
non-portable in the sense that an IPR implementation for a given compiler (or version of a
compiler) may not be configured to precisely handle all proprietary extensions.

Please note that not handling proprietary extensions is not an option for a general
representation, such as IPR, even though it can be for a specialized representation (say)
aimed at the specific task of parallelizing array computations.

4.5 Separate compilation and whole-program analysis

Real-world C++ programs consist of many separately-compiled translation units. Each
translation unit often consists of many hundreds of header files recursively #included by
a single source code file. As described so far, the IPR represents a C++ translation unit
as it appears after preprocessing; that is, as a single source file with the information from
the header files included and macros expanded. We can handle multiple translation units
by storing the IPR for many units and then reading them back in. The ability to store the
IPR in what we call XPR (“eXternal Program Representation”) format is essential because
most C++ compilers cannot compile two translation units in a single invocation.

The fact that IPR is unified is most useful here because that way every inconsistency
between translation units is automatically caught. For example, we could try to generate
IPR for a program with the two source files

// x.cpp
int glob;
int gfct();

and

// y.cpp
double glob;
void gfct();

The IPR will detect the two errors.
So, the IPR (supported by XPR) trivially supports whole-program analysis: Just add as

many source files as you want and run traversals and transforms as usual. This is also the
point where the compactness of nodes and the space savings from unification really pays
off.

However, the situation is still not quite ideal. Considering the problems with proprietary
extensions deep in implementations, we must consider an explicit approach to modularity.
The IPR knows the source of every declaration (to the line number), so it is easy to tell
what interface to a “module”, such as <iostream> was really used by user code. This
implies that we could represent a use of a module as the name of its header file plus the set
of declaration nodes used to access it. That is, we can treat a header file as a parameterized



module. Generating that is a fairly simple IPR program, but the need to abstract from
details of header files is so common that we are considering integrating it into the IPR itself.

Note that in general two uses of a “module” represented as a header file are not equivalent
because macros, typedef, etc. can affect the set of definitions in the header and meaning of
those definitions. We can trivially use the IPR to detect any differences or to detect any
differences that matter for a given use, though.

4.6 Simplicity

One measure of simplicity is that the complete source code for IPR (excluding compiler-
to-IPR generators) is just 2,500 lines of C++ (excluding comments). The code for IPR is
available from the author.

5 Related and Future Work

The IPR was inspired by the eXtented Type Information library designed by the second
author. XTI focused on the representation of the C++ type system, whereas IPR aims at
the full C++ language. There are many projects [1, 2, 14, 15, 17, 18, 19] targeting static
analysis and transformations of C++ programs. For example, CodeBoost [2, 3, 13] focuses
on transformations of C++ programs, for numerical PDE solvers, written in the Sophus

style. Simplicissimus [18, 19] and ROSE [17] are other projects for transforming C++
programs. Many of these systems are commercial and not documented in the literature.
Few aim to handle full Standard C++, few aims at generality (as opposed to specific
applications), and few aims at compiler independence. None — to our knowledge — aims
at all three.

Obviously, our immediate aims include applications that test the generality and portabil-
ity of the IPR and its associated tools. For example, conventional style analyzers, statistics
gathering, and visualization tools. We have been able to represent the full source code
FireFox. We will experiment with the use of concepts and library-specific validations, op-
timizations, and transformations in the domains of parallel, distributed, and embedded
systems.

We plan to provide more ways of specifying traversals and transforms (such as ROSE
and CodeBoost) and to work on better ways of specifying type-sensitive (incl. concept
sensitive) traversals and transformations.

From the standpoint of the structure of the IPR, the most important direction of work
is to get a better handle on modularity.

We will work to make the compiler to IPR generation more complete; it is already more
complete that some popular compilers, but every lacking feature will cause a problem for
someone. In addition we will try to interface the IPR to more compilers and handle more
dialects.

6 Conclusion

Current frameworks for representing C++ are not general, complete, accessible and efficient.
In this paper, we have shown how general, systematic, and simple design rules can lead to
a complete, direct, and efficient representation of ISO Standard C++. In particular, we
don’t have to resort to ad hoc rules for program representation or low-level techniques



for completeness or efficiency. Unification helps maintain consistency, keeps our program
representation compact (as required for scalability), and minimizes the cost of comparisons.
To serve the widest range of applications, we use syntactic unification. Given syntactic
unification, we can implement semantic unification by a simple transformation, whereas
the other way around is impossible without referring back to the program source text. In
addition to unification, careful and systematic node class and node class hierarchy design
is necessary to minimize overhead and enable scaling.

Acknowledgements

This work was partly supported by NSF grant CCF-0702765.

References and Notes

[1] S. Amarasinghe, J. Anderson, M. Lam, and C.-W. Tseng. An overview of the SUIF
compiler for scalable parallel machines. In Proceedings of the Seventh SIAM Confer-
ence on Parallel Processing for Scientific Computing, San Francisco, CA, 1995.

[2] O. Bagge. CodeBoost: A Framework for Transforming C++ Programs. Master’s
thesis, University of Bergen, P.O.Box 7800, N-5020 Bergen, Norway, March 2003.

[3] O. Bagge, K. Kalleberg, M. Haveraaen, and E. Visser. Design of the CodeBoost
transformation system for domain-specific optimisation of C++ programs. In Dave
Binkley and Paolo Tonella, editors, Third International Workshop on Source Code
Analysis and Manipulation (SCAM 2003), pages 65–75, Amsterdam, The Nether-
lands, September 2003. IEEE Computer Society Press.

[4] James O. Coplien. Curiously Recurring Template Patterns. C++ Report, 7(2):24–27,
1995.

[5] Gabriel Dos Reis and Bjarne Stroustrup. Specifying C++ Concepts. In Conference
Record of POPL ’06: The 33th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 295–308, Charleston, South Carolina, USA, 2006.

[6] The Edison Design Group. http://www.edg.com/.

[7] Margaret E. Ellis and Bjarne Stroustrup. The Annotated C++ Reference Manual.
Addison-Wesley, 1990.

[8] Erich Gamma, Richard Helm, Ralph Johson, and John Vlissides. Design Patterns.
Addison-Wesley, 1994.

[9] GNU Compiler Collection. http://gcc.gnu.org/.

[10] Douglas Gregor, Jaakko Järvi, Jeremy Siek, Bjarne Stroustrup, Gabriel Dos Reis,
and Andrew Lumsdaine. Concepts: Linguistic Support for Generic Programming in
C++. In OOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN conference on
Object-Oriented Programming Languages, Systems, and Applications, pages 291–310,
New York, NY, USA, 2006. ACM Press.



[11] International Organization for Standards. International Standard ISO/IEC 14882.
Programming Languages — C++, 2nd edition, 2003.

[12] International Organization for Standards. ISO/IEC PDTR 18015. Technical Report
on C++ Performance, 2003. Performance.

[13] K. Kalleberg. User-configurable, High-Level Transformations with CodeBoost. Mas-
ter’s thesis, University of Bergen, P.O.Box 7800, N-5020 Bergen, Norway, March 2003.

[14] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation. In CGO ’04: Proceedings of the international
symposium on Code generation and optimization, page 75, Washington, DC, USA,
2004. IEEE Computer Society.

[15] Sang-Ik Lee, Troy A. Johnson, and Rudolf Eigenmann. Cetus — An Extensible
Compiler Infrastructure for Source-to-Source Transformation. In Proceedings of the
16th International Workshop on Languages and Compilers for Parallel Computing
(LCPC), pages 539–553, October 2003.

[16] Georges C. Necula, Scott McPeak, Shree Prakash Rahul, and Westley Weimer. CIL:
Intermediate Language and Tools for Analysis and Tranformations of C Programs. In
Proceedings of the 11th International Conference on Compiler Construction, volume
2304 of Lecture Notes in Computer Science, pages 219–228. Springer-Verlag, 2002.
http://manju.cs.berkeley.edu/cil/.

[17] M. Schordan and D. Quinlan. A Source-to-Source Architecture for User-Defined Opti-
mizations. In Proceeding of Joint Modular Languages Conference (JMLC’03), volume
2789 of Lecture Notes in Computer Science, pages 214–223. Springer-Verlag, 2003.

[18] S. Schupp, D. Gregor, D. Musser, and S.-M. Liu. User-extensible simplification —
type-based optimizer generators. In R. Wihlem, editor, International Conference on
Compiler Construction, Lecture Notes in Computer Science, 2001.

[19] S. Schupp, D. Gregor, D. Musser, and S.-M. Liu. Semantic and behavioural li-
brary transformations. Information and Software Technology, 44(13):797–810, Oc-
tober 2002.

[20] Bjarne Stroustrup. C++ Applications. http://www.research.att.com/˜bs/

applications.html.


