Create itinerary optimization service using Bing Maps

This guide describes how to create an Optimization service to solve the Travelling Salesman Problem (TSP) and Vehicle Routing Problem (VRP). The solution uses an open-source optimizer library and an array of distance matrix between a set of origins and destinations. An http trigger will be created using Azure Function to create an API on the Microsoft Azure cloud.
When requesting distance matrix, it is necessary to pass all the waypoints as origins and destinations in the input to generate cost matrix for all the possible paths. The optimizer needs to know the cost to traverse between each node to generate the best outcome. For a scenario in which 2 agents need to visit 5 locations, you would need to input 7 waypoints as origin and 7 waypoints as destination. The matrix should look like the following:

	
	Agent1
	Agent2
	Stop1
	Stop2
	Stop3
	Stop4
	Stop5

	Agent1
	0
	2
	5
	1
	3
	1
	2

	Agent2
	4
	0
	5
	6
	1
	7
	3

	Stop1
	1
	2
	0
	7
	8
	5
	1

	Stop2
	4
	6
	5
	0
	4
	1
	1

	Stop3
	2
	2
	2
	1
	0
	1
	2

	Stop4
	1
	1
	1
	4
	4
	0
	3

	Stop5
	3
	8
	5
	6
	2
	1
	0



Prerequisites
Use of the following software and library is required:
· OR tools – The package can be installed from Install OR-Tools. The library used in the solution is OR Tools for Python. This guide is to help you get started with an open-source library. You could use any open-source solution of your choice that best suits your requirements.
· Distance Matrix – You can use Bing Maps Distance Matrix.
· Azure Tools Extension for VS Code – Can be downloaded from Azure Tools.
· Application Insights (optional) – To write logs and monitor your function app for debugging.
· Python 3.11
· Visual Studio Code
Setup
1. Download the package using the provided zipped file.

2. Install all the required tools and packages. Refer to requirements.txt in the sample. You can run the following command to install the dependencies using the requirements.txt file.

pip install -r requirements.txt

3. Open the project folder in VS Code.

4. Download the Azure tools in VS Code

5. Create Azure function to build an API that returns the travel itinerary for the given set of agents and stops. The code sample implements the vehicle Routing problem for multiple drivers for the best optimal path.

6. In MIO.html, find the string “https://miodemo.azurewebsites.net” and replace “miodemo” with the Function App name. For example, if the app name is “optimize”, then the new string will be “https://optimize.azurewebsites.net”

7. Under the applications settings of the newly created Function app, add the following key-value pairs.

a. BME_KEY = <Bing Maps Developer Key, get one for free on Bing Maps Dev Center>

b. (Optional) MIO_APPINSIGHT_CONN_STRING=<Connection String of Application Insight, you need to create an Application Insights resource on Azure and get the connection string>

MIO_APPINSIGHT_CONN_STRING helps to write logs of your Azure function for debugging. This step is an optional step and if you don't want to create it, you can modify the init_log() function under utils/log.py to comment the part about Azure Application Insights.

8. In VS Code, open the Azure workspace, select the Azure Functions option, and select Deploy to Function App to deploy your solution to Azure.
[image: ]

Note: The sample supports assigning stops to multiple agents delivering multiple stops, but you can add additional constraints such as capacity, pickups and deliveries and resource constraints to your solution. There are additional VRP examples added to this project that you can refer to. You can find more samples on the OR tools webpage.
Usage
The code sample contains an html page that you can use to request the endpoint and visualize the results on a map. To see the results:
1. Browse https://<your function app name>.azurewebsites.net/mioui for the sample html and use https://<your function app name>.azurewebsites.net/api/mio to access the endpoint.

2. In the sample application, enter your Bing Maps dev key. 
Note - The sample uses Bing Maps base map data and Route service to get route for the agents.
3. In the app, enter the request body for the custom optimizer API which is the vehicle and location information in a GeoJson format. Refer to the examples in the sample code for template. For a quick start, the application is prepopulated with a sample request body.

4. Click Get Routes.

5. The results will be displayed on a table sorted by the agent vehicles and the order in which they will visit the stops. The routes will be drawn on the map and color coded to match the corresponding agent in the results table.

[image: A screenshot of a map

Description automatically generated]
Screenshot of the sample application

image1.png

image2.png

