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Despite the great success of inferring and programming with universal types, their dualÐexistential typesÐare

much harder to work with. Existential types are useful in building abstract types, working with indexed types,

and providing first-class support for refinement types. This paper, set in the context of Haskell, presents a

bidirectional type-inference algorithm that infers where to introduce and eliminate existentials without any

annotations in terms, along with an explicitly typed, type-safe core language usable as a compilation target.

This approach is backward compatible. The key ingredient is to use strong existentials, which support (lazily)

projecting out the encapsulated data, not weak existentials accessible only by pattern-matching.
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1 INTRODUCTION

Parametric polymorphism through the use of universally quantified type variables is pervasive in
functional programming. Given its overloaded numbers, a beginning Haskell programmer literally
cannot ask for the type of 1 + 1 without seeing a universally quantified type variable.

However, universal quantification has a dual: existentials. While universals claim the spotlight,
with support for automatic elimination (that is, instantiation) in all non-toy typed functional
languages we know and automatic introduction (frequently, let-generalization) in some, existentials
are underserved and impoverished. In every functional language we know, both elimination and
introduction must be done explicitly every time, and languages otherwise renowned for their type
inferenceÐsuch as HaskellÐrequire that users define a new top-level datatype for every existential.

While not as widely useful as universals, existential quantification comes up frequently in richly
typed programming. Further examples are in Section 2, but consider writing a dropWhile function
on everyone’s favorite example datatype, the length-indexed vector:
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-- dropWhile predicate vec drops the longest prefix of vec such that all elements in the prefix

-- satisfy predicate. In this type, n is the vector’s length, while a is the type of elements.

dropWhile :: (a→ Bool) → Vec n a→ Vec ??? a

How can we fill in the question marks? Without knowing the contents of the vector and the
predicate we are passing, we cannot know the length of the output. Furthermore, returning an
ordinary, unindexed list would requiring copying a suffix of the input vector, an unacceptable
performance degradation.

Existentials come to our rescue: dropWhile :: (a→ Bool) → Vec n a→ ∃m. Vec m a. Though this
example can be written today in a number of languages, all require annotations in terms both to pack
(introduce) the existential and unpack (eliminate) it through the application or pattern-matching of
a data constructor.

This paper describes a type-inference algorithm that supports implicit introduction and elimina-
tion of existentials, with a concrete setting in Haskell. We offer the following contributions:

• Section 4 presents our type-inference algorithm, the primary contribution of this paper. The
algorithm is a small extension to an algorithm that accepts a Hindley-Milner language; our
language, X, is thus a superset of Hindley-Milner (Theorem 7.3). In addition, it supports
several stability properties [Bottu and Eisenberg 2021]; a language is stable if small, seemingly
innocuous changes to the input program (such as let-inlining) do not cause a change in the
type or acceptability of a program (Theorems 7.4ś7.6). Our algorithm is easily integrable
with the latest inference algorithm [Serrano et al. 2020] in the Glasgow Haskell Compiler
(GHC) (Section 8).
• Section 5 presents a core language based on System F, FX, that is a suitable target of com-
pilation (Section 6) for X. We prove FX is type-safe (Theorems 5.1 and 5.2) and supports
type erasure (Theorem 5.3). It is designed in a way that is compatible with the existing
System FC [Sulzmann et al. 2007] language used internally within GHC. All programs ac-
cepted by our algorithm elaborate to well-typed programs in FX (Theorem 7.1). In addition,
elaboration preserves the semantics of the source program, as we can observe by examining
the result of type erasure (Theorem 7.2).

We normally desire type-inference algorithms to come with a declarative specification, where
automatic introduction and elimination of quantifiers can happen anywhere, in the style of the
Hindley-Milner type system [Hindley 1969; Milner 1978]. These specifications come alongside
syntax-directed algorithms that are sound and complete with respect to the specification [Clément
et al. 1986; Damas and Milner 1982]. However, we do not believe such a system is possible with
existentials; while negative results are hard to prove conclusively, we lay out our arguments against
this approach in Section 9.1. Instead, we present just our algorithm, though we avoid the complica-
tion and distraction of unification variables by allowing our algorithm to non-deterministically
guess monotypes 𝜏 in the style of a declarative specification.
There is a good deal of literature in this area; much of it is focused on module systems, which

often wish to hide the nature of a type using an existential package. We review some important
prior work in Section 10.

The concrete examples in this paper are set in Haskell, but the fundamental ideas in our inference
algorithm are fully portable to other settings, including in languages without let-generalization.

2 MOTIVATION AND EXAMPLES

Though not as prevalent as examples showing the benefits of universal polymorphism, easy
existential polymorphism smooths out some of the wrinkles currently inherent in programming
with indexed types such as GADTs [Xi et al. 2003].
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filter :: (a→ Bool) → Vec n a→ ExVec a

filter Nil = MkEV Nil

filter p (x :> xs) | p x

, MkEV v ← filter p xs

= MkEV (x :> v)

| otherwise = filter p xs

filter :: (a→ Bool) → Vec n a→ ∃m. Vec m a

filter Nil = Nil

filter p (x :> xs) | p x = x :> filter p xs

| otherwise = filter p xs

(a) (b)

Fig. 1. Implementations of filter over vectors (a) in today’s Haskell, and (b) with our extensions

2.1 Unknown Output Indices

We first return to the example from the introduction, writing an operation that drops an indetermi-
nate number of elements from a length-indexed vector:

data Nat = Zero | Succ Nat

type Vec :: Nat → Type→ Type -- -XStandaloneKindSignatures, new in GHC 8.10

data Vec n a where

Nil :: Vec Zero a

(:>) :: a→ Vec n a→ Vec (Succ n) a

infixr 5 :>

In today’s Haskell, the way to write dropWhile over vectors is like this:

type ExVec :: Type→ Type

data ExVec a where

MkEV :: ∀(n :: Nat) (a :: Type). Vec n a→ ExVec a

dropWhile :: (a→ Bool) → Vec n a→ ExVec a

dropWhile Nil = MkEV Nil

dropWhile p (x :> xs) | p x = dropWhile p xs

| otherwise = MkEV (x :> xs)

However, with our inference of existential introduction and elimination, we can simplify to this:

dropWhile :: (a→ Bool) → Vec n a→ ∃m. Vec m a

dropWhile Nil = Nil

dropWhile p (x :> xs) | p x = dropWhile p xs

| otherwise = x :> xs

There are two key differences: we no longer need to define the ExVec type, instead using ∃m. Vec m a;
and we can omit any notion of packing in the body of dropWhile. Similarly, clients of dropWhile

would not need to unpack the result, allowing the result of dropWhile to be immediately consumed
by a map, for example.

2.2 Increased Laziness

Another function that produces an output of indeterminate length is filter . It is enlightening to
compare the implementation of filter using today’s existentials and the version possible with our
new ideas; see Figure 1.
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What if unpack were simply lazy? The problem is that this is not simple! A straight-
forward typed operational semantics would not suffice, because there is no way to, say,
reduce an unpack into a substitution (the way we would handle a lazy let). We could
imagine an untyped operational semantics that did not require unpack to evaluate the
existential package, binding its variable with a lazy binding. Without types, though, we
would be unable to prove safety. In order to keep a typed operational semantics with a lazy
unpack, we must model a set of heap bindings and an evaluation stack in our semantics.
While this is possible, such an operational semantics is unsuitable for a (dependently
typed) language where we also might wish to evaluate in types, which is our eventual
goal for Haskell. The claim here is not that a lazy unpack is impossible, but that it is not
obviously superior to the approach we advocate for here.

Relatedly, one could wonder whether we should just use a lazy Haskell pattern in
filter . Alas, Haskell does not allow a lazy pattern to bind existential variables: writing
∼(MkEV v) ← filter p xs in Figure 1(a) would cause a compile-time error. This restriction
in today’s Haskell is not incidental, because the internal language would require exactly
the power of the open approach we propose here in order to support such a lazy pattern.

Aside 1. Why lazy unpack is no easy answer

Beyond just the change to the types and the disappearance of terms to pack and unpack exis-
tentials, we can observe that the laziness of the function has changed. (See Aside 1 for why we
cannot easily make unpack bind lazily.) In Figure 1(a), we see that the recursive call to filter must be
made before the use of the cons operator :>. This means that, say, computing take 2 (filter p vec)

(assuming take is clever enough to expect an ExVec) requires computing the result of the entire
filter , even though the analogous expression on lists would only requiring filtering enough of vec
to get the first two elements that satisfy p. The implementation of filter also requires enough stack
space to store all the recursive calls, requiring an amount of space linear in the length of the input
vector.

By contrast, the implementation in Figure 1(b) is lazy in the tail of the vector. Computing
take 2 (filter p vec) really would only process enough elements of vec to find the first 2 that satisfy
p. In addition, the computation requires only constant stack space, because filter will immediately
return a cons cell storing a thunk for filtering the tail. If a bounded number of elements satisfy p,
this is an asymptotic improvement in space requirements.
We can support the behavior evident in Figure 1(b) only because we use strong existential

packages, where the existentially packed type can be projected out from the existential package,
instead of relying on the use of a pattern-match. Furthermore, projection of the packed type is
requires no evaluation of any expression. We return to explain more about this key innovation in
Section 3.

2.3 Object Encoding

Suppose we have a pretty-printer feature in our application, making use of the following class:

class Pretty a where

pretty :: a→ Doc
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There are Pretty instances defined for all relevant types. Now, suppose we have order :: Order ,
client ::Client , and status::OrderStatus; we wish to create a message concatenating these three details.
Today, we might say vcat [pretty order, pretty client, pretty status ], where vcat :: [Doc ] → Doc.
However, equipped with lightweight existentials, we could instead write vcat [order, client, status ],
where vcat :: [∃a. Pretty a ∧ a] → Doc. Here, the ∧ type constructor allows us to pack a witness
for a constraint (such as a type class dictionary [Hall et al. 1996]) inside an existential package.
Each element of the list is checked against the type ∃a. Pretty a ∧ a. Choosing one, checking order
against ∃a. Pretty a ∧ a uses unification to determine that the choice of a should be Order , and we
will then need to satisfy a Pretty Order constraint. In the implementation of vcat , elements of type
∃a. Pretty a ∧ a will be available as arguments to pretty :

vcat :: [∃a. Pretty a ∧ a] → Doc

vcat [ ] = empty

vcat (x : xs) = pretty x $$ vcat xs

While the code simplification at call sites is modest, the ability to abstract over a constraint in
forming a list makes it easier to avoid the types from preventing users from expressing their
thoughts more directly.
Our main formal presentation in this paper does not include the packed constraints required

here, but Section 9.2 considers an extension to our work that would support this example.

2.4 Richly Typed Data Structures

Suppose we wish to design a datatype whose inhabitants meet certain invariants by construction. If
the invariants are complex enough, this can be done only by designing the datatype as a generalized
algebraic datatype (GADT) [Xi et al. 2003]. Though other examples in this space abound (for
example, encoding binary trees [McBride 2014] and regular expressions [Weirich 2018]), we will
use the idea of a well-typed expression language, perhaps familiar to our readers.1

The idea is encapsulated in these definitions:

data Ty = Ty :→ Ty | . . . -- base types elided

type Exp :: [Ty ] -- types of in-scope variables

→ Ty -- type of expression

→ Type

data Exp ctx ty where

App :: Exp ctx (arg :→ result) → Exp ctx arg → Exp ctx result

. . .

An expression of type Exp ctx ty is guaranteed to be well-typed in our object language: note that a
function application requires the function to have a function type arg :→ result and the argument
to have type arg. (The ctx is a list of the types of in-scope variables; using de Bruijn indices means
we do not need to map names.) We are thus unable to represent the syntax tree applying, say, the
number 5 to an argument True.

However, if we are to use Exp in a running interpreter, we have a problem: users might not type
well-typed expressions. How can we take a user-written program and represent it in Exp? We must
type-check it.

1This well-worn idea perhaps originates in a paper by Pfenning and Lee [1989], though that paper does not use an indexed

datatype. Augustsson and Carlsson [1999] extend the idea to use a datatype, much as we have done here. A more in-depth

treatment of this example is the subject of a functional pearl by Eisenberg [2020].
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Assuming a type UExp (łunchecked expressionž) that is like Exp but without its indices, we
would write the following:2

typecheck :: (ctx :: [Ty ]) → UExp→ Maybe (∃ty . Exp ctx ty)

typecheck ctx (UApp fun arg) = do -- using the Maybe monad

fun’ ← typecheck ctx fun

arg’ ← typecheck ctx arg

-- decompose the type of fun’ into expectedArgTy :→ _resultTy :

(expectedArgTy, _resultTy) ← checkFunctionTy (typeOf fun’)

-- Check whether expectedArgTy and the type of arg’ are the same (failing if not)

-- Refl is a proof the types coincide; matching on it reveals this fact to the type-checker:

Refl ← checkEqual expectedArgTy (typeOf arg’)

return (App fun’ arg’)

The use of an existential type is critical here. There is no way to knowwhat the type of an expression
is before checking it, and yet we need this type available for compile-time reasoning to be able
to accept the final use of App. An example such as this one can be written today, but with extra
awkward packing and unpacking of existentials, or through the use of a continuation-passing
encoding. With the use of lightweight existentials, an example like this is easier to write, lowering
the barrier to writing richly typed, finely specified programs.

3 KEY IDEA: EXISTENTIAL PROJECTIONS

In our envisioned source language, introduction and elimination of existential types are implicit.
Precise locations are determined by type inference (as pinned down in Section 4)Ðaccordingly,
these locations may be hard to predict. Once these locations have been identified, the compiler must
produce a fully annotated, typed core language that makes these introductions and eliminations
explicit. We provide a precise account of this core language in Section 5. But before we do that,
we use this section to informally justify why we need new forms in the first place. Why can we
no longer use the existing encoding of existential types (based on Mitchell and Plotkin [1988] and
Läufer [1996]) internally?
The key observation is that, since the locations of introductions and eliminations are hard to

predict, they must not affect evaluation. Any other design would mean that programmers lose the
ability to reason about when their expressions are reduced.
The existing datatype-based approach requires an existential-typed expression to be evaluated

to head normal form to access the type packed in the existential. This is silly, however: types are
completely erased, and yet this rule means that we must perform runtime evaluation simply to
access an erased component of a some data.
To illustrate the problem, consider this Haskell datatype:

data Exists (f :: Type→ Type) = ∀(a :: Type). Ex ! (f a)

With this construct, we can introduce existential types using the data constructor Ex and eliminate
them by pattern matching on Ex . Note the presence of the strictness annotation, written with !. A
use of the Ex data constructor, if it is automatically inserted by the type inferencer, must not block
reduction.3

2This rendering of the example assumes the ability to write using dependent types, to avoid clutter. However, do not

be distracted: the dependent types could easily be encoded using singletons [Eisenberg and Weirich 2012; Monnier and

Haguenauer 2010], while we focus here on the use of existential types.
3Similarly, our choice of explicit introduction form for the core language must be strict in its argument if it is to be

unobservable.
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The difficult issue, however, is elimination. To access the value carried by Exists, we must use
pattern matching. We cannot use a straightforward projection function unExists :: Exists f → f ???:
it would allow the abstracted type variable to escape its scopeÐexactly why we cannot write a
well-scoped type signature for unExists. As a result, we cannot use this value without weak-head
evaluation of the term. As Section 3.2 shows, this forcing can decrease the laziness of our program.

While perhaps not as fundamental as our desire for introduction and elimination to be transparent
to evaluation, another design goal is to allow arbitrary let-inlining. In other words, if let x =

e1 in e2 type-checks, then e2 [e1 / x ] should also type-check. This property gives flexibility to
users: they (and their IDEs) can confidently refactor their program without fear of type errors.
Taken together, these design requirementsÐtransparency to evaluation and support for let-

inliningÐdrive us to enhance our core language with strong existentials [Howard 1969]: existentials
that allow projection of both the type witness and the packed value, without pattern-matching.4

3.1 Strong Existentials via pack and open

Our core language FX adopts the following constructs for introducing and eliminating existential
types:5

Pack
Γ ⊢ e : 𝜏2 [𝜏1/a]

Γ ⊢ pack 𝜏1, e as ∃ a.𝜏2 : ∃ a.𝜏2

Open

Γ ⊢ e : ∃ a.𝜏

Γ ⊢ open e : 𝜏 [⌊e : ∃ a.𝜏⌋ / a]

The pack typing rule is fairly standard [Pierce 2002, Chapter 24]. This term creates an existential
package, hiding a type 𝜏1 in the package with an expression e. Our operational semantics (Figure 7)
includes a rule that makes this construct strict.

To eliminate existential types, we use the open construct (from Cardelli and Leroy [1990]) instead
of pattern matching. The open construct eliminates an existential without forcing it, as opens are
simply erased during compilation. The type of open e is interesting: we substitute away the bound
variable a, replacing it with ⌊e : ∃ a.𝜏⌋. This type is an existential projection. The idea is that we can
think of an existential package ∃ a.𝜏 as a (dependent) pair, combining the choice for a (say, 𝜏0) with
an expression of type 𝜏 [𝜏0 / a]. The type ⌊e : ∃ a.𝜏⌋ projects out the type 𝜏0 from the pair.

A key aspect of open is that the type form ⌊e : ∃ a.𝜏⌋ is a completely opaque type. In our surface
language, ⌊e : ∃ a.𝜏⌋ is equal to itself and no other type. Computation is not necessary in types.
One way to think of this is to imagine that ⌊e : ∃ a.𝜏⌋ is like a fresh type variable whose name is
longÐnot as a construct that, say, accesses a type within e.
The simple idea of open is very powerful. It means that we can talk about the type in an

existential package without unpacking the package. It would even be valid to project out the type of
an existential package that will never be computed. Because types can be erased in our semantics,
even projecting out the type from a bottoming expression (of existential type) is harmless.6

Note that the type of the existential package expression is included in the syntax for projections
⌊e : ∃ a.𝜏⌋: this annotation is necessary because expressions in our surface language X might have
multiple, different types. (For example, 𝜆x → x has both type Int → Int and type Bool → Bool.)
Including the type annotation fixes our interpretation of e, but see Section 6 for more on this point.

4Strong existentials stand in contrast to weak existentials. A strong existential package supports operators that access the

encapsulated type and datum, while a weak existential requires pattern-matching in order to extract the datum and bring its

type into scope. In a lazy language, strong existentials thus have greater expressive power, as we can use a lazy projection,

as we do here.
5These rules are slightly simplified. The full rules appear in Section 5.
6Readers may be alarmed at that sentence: how could ⌊⊥ : ∃ a.a⌋ be a valid type? Perhaps a more elaborate system might

want to reject such a type, but there is no need to. As all types are erased and have no impact on evaluation, an exotic type

like this is no threat to type safety.
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3.2 The unpack Trap

Adding the open term to the language comes at a cost to complexity. Let us take a moment to
reflect on why a more traditional elimination form (called unpack) is insufficient.

A frequent presentation of existentials in a language based on System F uses the unpack primitive.
Pierce [2002, Chapter 24] presents the idea with this typing rule:

Unpack

Γ ⊢ e1 : ∃ a.𝜏2
Γ, a, x:𝜏2 ⊢ e2 : 𝜏

a ∉ fv(𝜏)

Γ ⊢ unpack e1 as a, x in e2 : 𝜏

The idea is that unpack extracts out the packed expression in a variable x, also binding a type
variable a to represent the hidden type. The typing rule corresponds to the pattern-match in
case e1 of Ex (x :: a) → e2, where x and a are brought into scope in e2.

7

This approach is attractive because it is simple to add to a language like System F. It does not
require the presence of terms in types and the necessary machinery that we describe in Section 5.
However, it is also not powerful enough to accommodate some of the examples we would like to
support.

The unpack term impacts evaluation. Because it is based on pattern matching, the unpack term
must reduce its argument to a weak-head normal form before providing access to the hidden type.
The standard reduction rule looks like this:

unpack (pack 𝜏1, e1 as ∃ a.𝜏2) as a, x in e2 −→ e1 [e1/x] [𝜏1/a]

What this rule means is that the only parts of the term that have access to the abstract type are the
ones that are evaluated after the existential has been weak-head normalized. Without weak-head
normalizing the argument to a pack, we have nothing to substitute for x and a.
Let us rewrite the filter example from Section 2.2, making more details explicit so that we can

see why this is an issue.

filter :: ∀n a. (a→ Bool) → Vec n a→ ∃m. Vec m a

filter = Λn a→ 𝜆(p :: a→ Bool) (vec :: Vec n a) →

case vec of

(:>) n1 (x :: a) (xs :: Vec n1 a) -- vec is x :> xs

| p x → ...

| otherwise→ filter n1 a p xs

Nil → pack Zero,Nil as ∃m. Vec m a -- vec is Nil

The treatment above makes all type abstraction and application explicit. Note that the pattern-
match for the cons operator :> includes a compile-time (or type-level) binding for the length of the
tail, n1.

The question here is: what do we put in the ... in the case where p x holds? One possibility is to
apply the (:>) operator to build the result. However, right away, we are stymied: what do we pass
to that operator as the length of the resulting vector? It depends on the length of the result of the
recursive call. A use of unpack cannot help us here, as unpack is used in a term, not in a type
index; even if we could use it, we would have to return the packed type, not something we can
ordinarily do.

7See Eisenberg et al. [2018] for more details on how Haskell treats that type annotation.
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Instead, we must use unpack (and pack) before calling the (:>) operator. Specifically, we can
write

unpack filter n1 a p xs as n2, ys in pack n2, (:>) n2 x ys as ∃m. Vec m a

This use of unpack is type-correct, but we have lost the laziness of filter we so prized in Section
2.2.

On the other hand, open allows us to fill in the ...with the following code, using the the existential
projection to access the new (type-level) length for the arguments to pack and to :>.

let ys :: ∃m. Vec m a -- usual lazy let

ys = filter n1 a p xs

in pack ⌊ys :: ∃m. Vec m a⌋, (:>) ⌊ys :: ∃m. Vec m a⌋ x (open ys) as ∃m. Vec m a

As we expand on in the next subsection, we do not have to let-bind ys; instead, we could just repeat
the sub-expression filter n1 a p xs.

3.3 The Importance of Strength

Beyond the peculiarities of the filter example, having a lazy construct that accesses the abstracted
type in an existential package is essential to supporting inferrable existential types.
Here is a somewhat contrived example to illustrate this point:

data Counter a = Counter {zero :: a, succ :: a→ a, toInt :: a→ Int }

mkCounter :: String → ∃a.Counter a -- a counter with a hidden representation

mkCounter = ...

initial1 :: Int

initial1 = let c = mkCounter "hello" in (toInt c) (zero c)

initial2 :: Int

initial2 = (toInt (mkCounter "hello")) (zero (mkCounter "hello"))

We would like our language to accept both initial1 and initial2. After all, one of the benefits
of working in a pure, lazy language is referential transparency: programmers (and tools, such as
IDEs) should be able to perform expression inlining with no change in behavior. In both initial1

and initial2, the compiler must automatically eliminate the existential that results from each use
of mkCounter . In the definition initial1, elaboration is not difficult, even if we only have the weak
unpack elimination form to work with.
However, supporting initial2 is more problematic. Maintaining the order of evaluation of the

source language requires two separate uses of the elimination form.
To type-check the application of toInt (mkCounter "hello") to zero (mkCounter "hello"), we

must first know the type packed into the package returned from mkCounter "hello". Accessing
this type should not evaluate mkCounter "hello", however: a programmer rightly expects that
toInt is evaluated before any call to mkCounter is, which may have performance or termination
implications. More generally, we can imagine the need for a hidden type arbitrarily far away from
the call site of a function (such as mkCounter) that returns an existential; eager evaluation of the
function would be most unexpected for programmers.
Note that, critically, both calls to mkCounter in initial2 contain the same argument. Since we

are working in a pure context, we know that the result of the two calls to mkCounter "hello" in
initial2 must be the same, and thus that the program is well-typed.

In sum, if the compiler is to produce the elimination form for existentials, that elimination form
must be nonstrict, allowing the packed witness type to be accessed without evaluation. Any other
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choice means that programmers must expect hard-to-predict changes to the evaluation order of
their program. In addition, if we wish to allow users to inline their let-bound identifiers, this
projection form must also be strong, and remember the existentially typed expression in its type.

Note that we are taking advantage of Haskell’s purity in this part of the design. We can soundly
support a strong elimination form like open only because we know that the expressions which
appear in types are pure. All projections of the type witness from the same expression will be equal.
In a language without this property, such as ML, we would need to enforce a value restriction on the
type projections. Such a value restriction would prevent us from injecting, say, a non-deterministic
expression into types; as there is no notion of evaluating a type, it would be unclear when and how
often to evaluate the expression which could yield different results at each evaluation.

4 INFERRING EXISTENTIALS

In this section we present the surface language, X, that we use to manipulate existentials, and the
bidirectional type system that infers them. As our concrete setting is in Haskell, our starting point
is the surface language described by Serrano et al. [2020], modified to add support for existentials.
We add a syntax for existential quantifiers ∃ a.𝜖 and existential projections ⌊e : 𝜖⌋. An important
part of our type system is the type instantiation mechanism, which implicitly handles the opening
of existentials (Section 4.3).

4.1 Language Syntax

The syntax of our types is given in Figure 2.

𝜎 ::= 𝜖 | ∀ a.𝜎 universally quantified type
𝜖 ::= 𝜌 | ∃ b.𝜖 existentially quantified type
𝜌 ::= 𝜏 | 𝜎1 → 𝜎2 top-level monomorphic type
𝜏 ::= a | Int | 𝜏1 → 𝜏2 | ⌊e : 𝜖⌋ monomorphic type
a, b ::= . . . type variable

Γ ::= ∅ | Γ, a | Γ, x:𝜎 typing context

Fig. 2. Type stratification

Polytypes 𝜎 can quantify an arbitrary number (including 0) universal variables and, within the
universal quantification, an arbitrary number (including 0) existential variables. This stratification is
enforced through the distinction between 𝜎-types and 𝜖-types. Note that the type ∃ a.∀ b.𝜏 is ruled
out.8 Top-level monotypes 𝜌 have no top-level quantification. Monotypes 𝜏 include a projection
form ⌊e : 𝜖⌋ that occurs every time an existential is opened, as described in Section 3.1. Universal
and existential variables draw from the same set of variable names, denoted with a or b.

The expressions of X are defined in Figure 3. This language is a fairly small 𝜆-calculus, with type
annotations and 𝑛-ary application (including type application). The expression h 𝜋1 ... 𝜋n applies a
head to a sequence of arguments 𝜋i that can be expressions or types. The head is either a variable
𝑥 , an annotated expression e :: 𝜎 , or an expression e that is not an application.9

8As usual, stratifying the grammar of types simplifies type inference. In our case, this choice drastically simplifies the

challenge of comparing types with mixed quantifiers. Dunfield and Krishnaswami [2019, Section 2] have an in-depth

discussion of this challenge.
9Our grammar does not force a head expression h to be something other than an application, but we will consistently

assume this restriction is in force. It would add clutter and obscure our point to bake this restriction in the grammar.
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x ::= . . . term variable
n ::= . . . integer literal

e ::= h 𝜋 | 𝜆x .e | let x = e1 in e2 | n expression
h ::= x | e | e :: 𝜎 expression head
𝜋 ::= e | 𝜎 argument

Fig. 3. Our surface language, X

An important complication of our type system is that expressions may appear in types: this
happens in the projection form ⌊e : 𝜖⌋. We thus must address how to treat type equality. For
example, suppose term variable x (of type Int) is free in a type 𝜏 ; is 𝜏 [(𝜆y.y) 1 / x] equal to 𝜏 [1 / x]?
That is, does type equality respect 𝛽-reduction? Our answer is łnož: we restrict type equality in
our language to be syntactic equality (modulo 𝛼-equivalence, as usual). We can imagine a richer
type equality relationÐwhich would accept more programsÐbut this simplest, least expressive
version satisfies our needs. (However, see Aside 2 in Section 7.3 for a wrinkle here.) Adding such
an equality relation is largely orthogonal to the concerns around existential types that draw our
focus.10

4.2 Type System

The typing rules of our language appear in Figure 4. This bidirectional type system uses two forms
for typing judgments: Γ ⊢ e ⇒ 𝜌 means that, in the type environment Γ, the program e has the
inferred type 𝜌 , while Γ ⊢ e ⇐ 𝜌 means that, in the type environment Γ, e is checked to have
type 𝜌 . We also use a third form to simplify the presentation of the rules: Γ ⊢ e⇔ 𝜌 , which means
that the rule can be read by replacing⇔ with either⇒ or⇐ in both the conclusion and premises.
Although the rules are fairly close to the standard rules of a typed 𝜆-calculus, handling existentials
through packing and opening has an impact on the rules Let and Gen.

We review the rules in Figure 4 here, deferring the most involved rule, App, until after we discuss
the instantiation judgment ⊢inst, in Section 4.3.

4.2.1 Simple Subsumption. Bidirectional type systems typically rely on a reflexive, transitive
subsumption relation ⩽, where we expect that if e : 𝜎1 and 𝜎1 ⩽ 𝜎2, then e : 𝜎2 is also derivable.
For example, we would expect that ∀ a.a→ a ⩽ Int→ Int. This subsumption relation is then used
when łswitching modesž; that is, if we are checking an expression e against a type 𝜎2 where e has a
form resistant to type propagation (the case when e is a function call), we infer a type 𝜎1 for e and
then check that 𝜎1 ⩽ 𝜎2.
However, our type system refers to no such ⩽ relation: we essentially use equality as our

subsumption relation, invoking it implicitly in our rules through the use of a repeated metavariable.
(Though hard to see, the repeated metavariable is the 𝜌r in rule App, when replacing the⇔ in the
conclusion with a⇐.) We get away with this because our bidirectional type-checking algorithm
works over top-level monotypes 𝜌 , not the more general polytype 𝜎 . A type 𝜌 has no top-level
quantification at all. Furthermore, our type system treats all types as invariantÐincluding→. This
treatment follows on from the ideas in Serrano et al. [2020, Section 5.8], which describes how
Haskell recently made its arrow type similarly invariant.

We adopt this simpler approach toward subsumption both to connect our presentation with the
state-of-the-art for type inference in Haskell [Serrano et al. 2020] and also because this approach

10Our core language FX does need to think harder about this question, in order to prove type safety. See Section 5.1.
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Γ ⊢∀ e⇐ 𝜎 (Universal type checking)

Gen

Γ, 𝑎 ⊢ e⇐ 𝜌 [𝜏 /𝑏]

fv(𝜏) ⊆ dom(Γ, 𝑎)

Γ ⊢∀ e⇐ ∀𝑎.∃𝑏.𝜌

Γ ⊢ e⇒ 𝜌 Γ ⊢ e⇐ 𝜌 (Type synthesis and type checking)

App
Γ ⊢ℎ h⇒ 𝜎

Γ ⊢inst h : 𝜎 ; 𝜋 { 𝜎 ; 𝜌r
𝑒 = exprargs(𝜋)

Γ ⊢∀ ei ⇐ 𝜎i

Γ ⊢ h 𝜋 ⇔ 𝜌r

iAbs

Γ, x:𝜏 ⊢ e⇒ 𝜌

fv(𝜏) ⊆ dom(Γ) 𝑎 fresh

𝜌 ′ = 𝜌 [𝑎 / ⌊𝜌⌋x] (see ğ4.2.3)

Γ ⊢ 𝜆x .e⇒ 𝜏 → ∃𝑎.𝜌 ′

cAbs

Γ, x:𝜎1 ⊢
∀ e⇐ 𝜎2

fv(𝜎1) ⊆ dom(Γ)

Γ ⊢ 𝜆x .e⇐ 𝜎1 → 𝜎2

Int

Γ ⊢ n⇔ Int

Let
Γ ⊢ e1 ⇒ 𝜌1

𝑎 = fv(𝜌1)\dom(Γ)

Γ, x:∀𝑎.𝜌1 ⊢ e2 ⇔ 𝜌2

Γ ⊢ let x = e1 in e2 ⇔ 𝜌2 [e1 / x]

Γ ⊢ℎ h⇒ 𝜎 (Head synthesis)

H-Var

x:𝜎 ∈ Γ

Γ ⊢ℎ x ⇒ 𝜎

H-Ann

Γ ⊢∀ e⇐ 𝜎

fv(𝜎) ⊆ dom(Γ)

Γ ⊢ℎ (e :: 𝜎) ⇒ 𝜎

H-Infer

Γ ⊢ e⇒ 𝜌

Γ ⊢ℎ e⇒ 𝜌

Fig. 4. Type inference for X

simplifies our typing rules. We see no obstacle to incorporating our ideas with a more powerful
subsumption judgment, such as the deep-skolemization judgment of Peyton Jones et al. [2007,
Section 4.6.2] or the slightly simpler co- and contravariant judgment of Odersky and Läufer [1996,
Figure 2].

4.2.2 Checking against a Polytype. Rule Gen, the sole rule for the Γ ⊢∀ e ⇐ 𝜎 judgment, deals
with the case when we are checking against a polytype 𝜎 . If we want to ensure that e has type 𝜎 ,
then we must skolemize any universal variables bound in 𝜎 : these variables behave essentially as
fresh constants while type-checking e. Rule Gen thus just brings them into scope.
On the other hand, if there are existential variables bound in 𝜎 , then we must instantiate these.

If we are checking that e has some type ∃ a.𝜏0, that means we must find some type 𝜏 such that e
has type 𝜏0 [𝜏 / a]. This is very different than the skolemization of a universal variable, where we
must keep the variable abstract. Instead, when checking against ∃ a.𝜖 , we guess a monotype 𝜏 and
check e against the type 𝜖 [𝜏 / a]. Rule Gen simply does this for nested existential quantification

over variables 𝑏. A real implementation might use unification variables, but we here rely on the
rich body of literature [e.g., Dunfield and Krishnaswami 2013] that allows us to guess monotypes
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during type inference, knowing how to translate this convention into an implementation using
unification variables.

4.2.3 Abstractions. Rule iAbs synthesizes the type of a 𝜆-abstraction, by guessing the (mono)type
𝜏 of the bound variable and then inferring the type of the body e to be 𝜌 . However, rule iAbs

also can pack existentials. This is necessary to avoid skolem escape: it is possible that the type 𝜌
contains x free. However, it would be disastrous if 𝜆x .e was assigned a type mentioning x, as x is
no longer in scope.

For example, suppose we have Γ = f :Int→ ∃ a.a→ Bool. Now, consider inferring the type 𝜌 in
Γ ⊢ 𝜆x .f x ⇒ 𝜌 . Guessing x : Int, we will infer Γ, x:Int ⊢ f x ⇒ ⌊f x : ∃ a.a→ Bool⌋ → Bool. It is
tempting, then, to say Γ ⊢ 𝜆x .f x ⇒ Int→ ⌊f x : ∃ a.a→ Bool⌋ → Bool, but this is wrong: the type
mentions x free, but Γ does not bind x. Instead, rule iAbs infers Γ ⊢ 𝜆x .f x ⇒ ∃ a.Int→ a→ Bool,
by using a instead of the ill-scoped ⌊f x : ∃ a.a→ Bool⌋.

More generally, we must identify all existential projections within 𝜌 that have x free. These are
replaced with fresh variables 𝑎. We use the notation ⌊𝜌⌋x to denote the list of projections in 𝜌 ;
multiple projections of the same expression (that is, multiple occurrences of ⌊e0 : 𝜖0⌋ for some e0
and 𝜖0) are commoned up in this list. Formally,

⌊𝜌⌋x = {⌊e : 𝜖⌋ | (⌊e : 𝜖⌋ is a sub-expression of 𝜌) ∧ (x is a free variable in e)} .

The notation 𝜌 [𝑎 / ⌊𝜌⌋x] denotes the type 𝜌 where the 𝑎 are written in place of these projections.
Note that this notation is set up backward from the way it usually works, where we substitute some
type for a variable. Here, instead, we are replacing the type with a fresh variable.

In the conclusion of the rule, we existentially quantify the 𝑎, to finally obtain a function type of
the form 𝜏 → ∃𝑎.𝜌 ′.11

The checking rule cAbs is much simpler. We know the type of the bound variable by decomposing
the known expected type 𝜎1 → 𝜎2. We also need not worry about skolem escape because we have
been provided with a well-scoped 𝜎2 result type for our function. The only small wrinkle is the
need to use ⊢∀ in order to invoke rule Gen to remove any quantifiers on the type 𝜎2.

4.2.4 Let Skolem-escape. Rule Let deals with let-expressions, both in synthesis and in checking
modes. It performs standard let-generalization, computing generalized variables 𝑎 by finding the
free variables in 𝜌1 and removing any variables additionally free in Γ. Indeed, all that is unexpected
in this rule is the type substitution in the conclusion.

The problem, like with rule iAbs is the potential for skolem-escape. The variable x might appear
in the type 𝜌2. However, x is out of scope in the conclusion, and thus it cannot appear in the overall
type of the let-expression. One solution to this problem would be to pack all the existentials that fall
out of scope, much like we do in rule iAbs. However, doing so would mean that our bidirectional
type system now infers existential types 𝜖 instead of top-level monomorphic types 𝜌 ; keeping
with the simpler 𝜌 is important to avoid the complications of a non-trivial subsumption judgment.
Hence we choose to replace all occurrences of x inside of projections by the expression e1. This
does not pose a problem since e1 is well-typed according to the premises of the Let rule.

4.2.5 Inferring the Types of Heads. Following Serrano et al. [2020], our system treats 𝑛-ary applica-
tions directly, instead of recurring down a chain of binary applications e1 e2. The head of an 𝑛-ary
application is denoted with h; heads’ types are inferred with the Γ ⊢ℎ h⇒ 𝜎 judgment. Variables
simply perform a context lookup, annotated expressions check the contained expression against the

11Our language works well without this special substitution. Instead, we could have a check that the final inferred type in

rule iAbs is well scoped. However, this extra existential packing is easy enough to add, and so we have.
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Γ ⊢inst e : 𝜎 ; 𝜋 { 𝜎 ; 𝜌r (Instantiation judgment)

ITyArg

Γ ⊢inst e 𝜎 ′ : 𝜎 [𝜎 ′ / a] ; 𝜋 { 𝜎 ; 𝜌r
fv(𝜎 ′) ⊆ dom(Γ)

Γ ⊢inst e : ∀ a.𝜎 ; 𝜎 ′, 𝜋 { 𝜎 ; 𝜌r

IArg

Γ ⊢inst e e′ : 𝜎2 ; 𝜋 { 𝜎 ; 𝜌r

Γ ⊢inst e : (𝜎1 → 𝜎2) ; e
′, 𝜋 { 𝜎1, 𝜎 ; 𝜌r

IAll
𝜋 ≠ 𝜎 ′, 𝜋 ′

Γ ⊢inst e : 𝜎 [𝜏 / a] ; 𝜋 { 𝜎 ; 𝜌r
fv(𝜏) ⊆ dom(Γ)

Γ ⊢inst e : ∀ a.𝜎 ; 𝜋 { 𝜎 ; 𝜌r

IExist

Γ ⊢inst e : 𝜖 [⌊e : ∃ a.𝜖⌋ / a] ; 𝜋 { 𝜎 ; 𝜌r

Γ ⊢inst e : ∃ a.𝜖 ; 𝜋 { 𝜎 ; 𝜌r

IResult

Γ ⊢inst e : 𝜌r ; [] { [] ; 𝜌r

Fig. 5. Instantiation

provided type, and other expressions infer a 𝜌-type. It is understood here that we use rule H-Infer
only when the other rules do not apply, for example, for 𝜆-abstractions.

4.3 Instantiation Semantics

The instantiation rules of Figure 5 present an auxiliary judgment used in type-checking applications.
The judgment Γ ⊢inst e : 𝜎 ; 𝜋 { 𝜎 ; 𝜌r means: with in-scope variables Γ, apply function e of
type 𝜎 to arguments 𝜋 requires exprargs(𝜋) (the value arguments) to have types 𝜎 , resulting in an
expression e 𝜋 of type 𝜌r . This judgment is directly inspired by Serrano et al. [2020, Figure 4].
The idea is that we use ⊢inst to figure out the types of term-level arguments to a function in a

pre-pass that examines only type arguments. Having determined the expected types of the term-
level arguments 𝜎 , rule App (in Figure 4) actually checks that the arguments have the correct types.
This pre-pass is not necessary in order to infer the types for existentials, but it sets the stage for
Section 8, where we integrate our design with the current implementation in GHC.

Application. Rule ITyArg handles type application by instantiating the bound variable a with
the supplied type argument 𝜎 ′. Rule IArg handles routine expression application simply by remem-
bering that the argument should have type 𝜎1. Note that we do not check that the argument e′ has
type 𝜎1 here.

Quantifiers. Rule IAll deals with universal quantifiers in the function’s type by instantiating
with a guessed monotype 𝜏 . The first premise is to avoid ambiguity with rule ITyArg; we do not
wish to guess an instantiation when the user provides it explicitly with a type argument.

Rule IExist eagerly opens existentials by substituting a projection in place of the bound variable
a. This is the only place in the judgment where we need the function expression e: whenever we
open an existential type, we must remember what expression has that type, so that we do not
confuse two different existentially packed types.

For example, if f has type Bool→ ∃ b.(b, b→ Int), then the function application f True will be
given the opened pair type:

(⌊f True : ∃ b.(b, b→ Int)⌋, ⌊f True : ∃ b.(b, b→ Int)⌋ → Int)
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Rule IResult concludes computing the instantiation in a function application by copying the
function type to be the result type.

The App rule. Having now understood the instantiation judgment, we turn our attention to
ruleApp. After inferring the type 𝜎 for an application head h, 𝜎 gets instantiated, revealing argument
types 𝜎 . Each argument ei is checked against its corresponding type 𝜎i, where the entire function
application expression has type 𝜌r . Rule App operates in both synthesis and checking modes. When
synthesizing, it simply returns 𝜌r from the instantiation judgment; when checking, it ensures
that the instantiated type 𝜌r matches what was expected. We need do no further instantiation or
skolemization because we have a simple subsumption relation.

5 CORE LANGUAGE

Perhaps we can infer existential types using existential projections ⌊e : 𝜖⌋, but how do we know
such an approach is sound? We show that it is by elaborating our surface expressions into a core
language FX, inspired by a similar language described by Cardelli and Leroy [1990, Section 4], and
we prove the standard progress and preservation theorems of this language. This section presents
FX and states key metatheory results; the following section connects X to FX by presenting our
elaboration algorithm.

The syntax of FX is in Figure 6 and selected typing rules are in Figure 7; full typing rules appear
in the appendix.12 Note that we use upright Latin letters to denote FX expressions and types; when
we mix X and FX in close proximity, we additionally use colors.

B ::= →| Int | . . . base type

t, r, s ::= a | B t | ∀ a.t | ∃ a.t | ⌊e⌋ type
e, h ::= x | n | 𝜆x:t.e | e1 e2 | Λa.e | e t | pack t, e as t2

| open e | let x = e1 in e2 | e ▷ 𝛾 expression
v ::= n | 𝜆x:t.e | Λa.v | pack t, v as t2 value
𝛾 ::= ⟨t⟩ | sym𝛾 | 𝛾1 ;; 𝛾2 | ⌊𝜂⌋ | 𝛾1 @𝛾2 | projpack t, e as t2 | . . . type coercion
𝜂 ::= e ▷ 𝛾 | step e expression coercion
G ::= ∅ | G, x : t | G, a typing context

Fig. 6. Syntax of the core language, FX

The nub of FX is System F, with fully applied base types B (because they are fully applied, we
do not need to have a kind system) and ordinary universal quantification. We thus omit typing
rules from this presentation that are standard. The inclusion of existential types, pack and open is
fitting for a core language supporting existentials. This language necessarily has mutually recursive
grammars for types and expressions, but the typing rules are not mutually recursive: rule CT-Proj
shows that a projection in a type is well-formed when the expression is well-scoped. (The ⊢ G ok

premise refers to a routine context-well-formedness judgment, omitted.) We do not require the
existential package to be well-typed (though it would be, in practice).

5.1 Coercions

The biggest surprise in FX is its need for type and expression coercions. The motivation for these
can be seen in rule CS-OpenPack. If we are stepping an expression open (pack t, v as∃ a.t2), we
want to extract the value v from the existential package. The problem is that v has the wrong type.

12https://richarde.dev/papers/2021/exists/exists-extended.pdf
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G ⊢ e : t (Expression typing)

CE-Abs

G, x : t1 ⊢ e : t2
x ∉ fv(t2)

G ⊢ 𝜆x:t1.e : t1 → t2

CE-Let
G ⊢ e1 : t1

G, x : t1 ⊢ e2 : t2

G ⊢ let x = e1 in e2 : t2 [e1 / x]

CE-Pack
G ⊢ t : type

G ⊢ ∃ a.t2 : type
G ⊢ e : t2 [t / a]

G ⊢ pack t, e as∃ a.t2 : ∃ a.t2

CE-Open

G ⊢ e : ∃ a.t

G ⊢ open e : t[⌊e⌋ / a]

CE-Cast

G ⊢ e : t1 G ⊢ 𝛾 : t1 ∼ t2

G ⊢ e ▷ 𝛾 : t2

G ⊢ t : type (Type well-formedness)

CT-Proj

⊢ G ok fv(e) ⊆ dom(G)

G ⊢ ⌊e⌋ : type

G ⊢ 𝛾 : t1 ∼ t2 (Type coercion typing)

CG-Refl
G ⊢ t : type

G ⊢ ⟨t⟩ : t ∼ t

CG-Sym

G ⊢ 𝛾 : t1 ∼ t2

G ⊢ sym𝛾 : t2 ∼ t1

CG-Trans

G ⊢ 𝛾1 : t1 ∼ t2
G ⊢ 𝛾2 : t2 ∼ t3

G ⊢ 𝛾1 ;; 𝛾2 : t1 ∼ t3

CG-Proj

G ⊢ 𝜂 : e1 ∼ e2

G ⊢ ⌊𝜂⌋ : ⌊e1⌋ ∼ ⌊e2⌋

CG-InstExists

G ⊢ 𝛾1 : (∃ a.t1) ∼ (∃ a.t2)
G ⊢ 𝛾2 : t3 ∼ t4

G ⊢ 𝛾1 @𝛾2 : t1 [t3 / a] ∼ t2 [t4 / a]

CG-ProjPack

G ⊢ pack t, e as t2 : t2

G ⊢ projpack t, e as t2 : ⌊pack t, e as t2⌋ ∼ t

G ⊢ 𝜂 : e1 ∼ e2 (Expression coercion typing)

CH-Coherence

G ⊢ e : t1 G ⊢ 𝛾 : t1 ∼ t2

G ⊢ e ▷ 𝛾 : e ∼ (e ▷ 𝛾)

CH-Step
G ⊢ e : t

G ⊢ e′ : t G ⊢ e −→ e′

G ⊢ step e : e ∼ e′

G ⊢ e −→ e′ (Small-step operational semantics)

CS-PackCong

G ⊢ e −→ e′

G ⊢ pack t, e as t2 −→ pack t, e′ as t2

CS-OpenPack

G ⊢ open (pack t, v as t2) −→ v ▷ ⟨t2⟩@(sym (projpack t, v as t2))

CS-OpenCong

G ⊢ e : t G ⊢ e −→ e′

G ⊢ open e −→ open e′ ▷ ⟨t⟩@(sym ⌊step e⌋)

Fig. 7. Selected typing and reduction rules of the core language, FX
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Suppose that v has type t0. Then, we have pack t, v as∃ a.t2 : ∃ a.t2 and open (pack t, v as∃ a.t2) :
t2 [⌊pack t, v as∃ a.t2⌋ / a], according to rule CE-Open. This last type is not syntactically the same
as t0, although it must be that t0 = t2 [t / a] to satisfy the premises of rule CE-Pack. Because the
type of the opened existential does not match the type of the packed value, a naïve reduction rule
like G ⊢ open (pack t, v as t2) −→ v would not preserve types.

There are, in general, two ways to build a type system when encountering such a problem. We
could have a non-trivial type equality relation, where we say that ⌊pack t, e as t2⌋ ≡ t. Doing so
would simplify the reduction rules, but this simplification comes at a cost: our language would now
have a conversion rule that allows an expression of one type t1 to have another type t2 as long as
t1 ≡ t2. This rule is not syntax-directed; accordingly, it is hard to determine whether type-checking
remains decidable. Furthermore, a non-trivial type equality relation makes proofs considerably
more involved. In effect, we are just moving the complexity we see in the right-hand side of a rule
like rule CS-OpenPack into the proofs.

The alternative approach to a non-trivial equality relation is to use explicit coercions, as we have
here. The cost is clutter. Casts sully our reduction steps, and we need to explicitly shunt coercions
in several (omitted, unenlightening) reduction rulesÐfor example, when reducing ((𝜆x:t.e1) ▷ 𝛾) e2
where the cast intervenes between a 𝜆-abstraction and its argument. Despite the presence of these
rules in our operational semantics, coercions can be fully erased: we can write an alternative,
untyped operational semantics that omits coercions entirely. Theorem 7.2 shows that erasure
preserves program behavior.

Both approachesÐan enriched definitional equality vs. explicit coercionsÐare essentially equiv-
alent: we can view explicit coercions simply as an encoding of the derivation of an equality
judgment.13 We choose explicit coercions both because FX is a purely internal language (and thus
clutter is less noisome) and because it allows for an easy connection to the implementation of the
core language in GHC, based on System FC [Sulzmann et al. 2007], with similar explicit coercions.

The coercion language for FX includes constructors witnessing that they encode an equivalence
relation (rules CG-Refl, CG-Sym, and CG-Trans), along with several omitted forms showing that
the equivalence is also a congruence over types. Coercions also include several decomposition
operations; rule CG-InstExists shows one, used in our reduction rules. The two forms of interest
to use are ⌊𝜂⌋ (rule CG-Proj) and projpack (rule CG-ProjPack). The former injects the equivalence
relation on expressions (witnessed by expression coercions 𝜂) into the type equivalence relation,
and the latter witnesses the equivalence between ⌊pack t, e as t⌋ and its packed type t.
The equivalence relation on expressions is surprisingly simple: we need only the two rules in

Figure 7. These rules allow us to drop casts (supporting a coherence property which states that the
presence of casts is essentially unimportant) and to reduce expressions.

5.2 Metatheory

We prove (almost) standard progress and preservation theorems for this language:

Theorem 5.1 (Progress). If G ⊢ e : t, where G contains only type variable bindings, then one of

the following is true:

(1) there exists e′ such that G ⊢ e −→ e′;
(2) e is a value v; or
(3) e is a casted value v ▷ 𝛾 .

Theorem 5.2 (Preservation). If G ⊢ e : t and G ⊢ e −→ e′, then G ⊢ e′ : t.

13Weirich et al. [2017] makes this equivalence even clearer by presenting two proved-equivalent versions of a language, one

with a non-trivial, undecidable type equality relation and another with explicit coercions.
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Γ ⊢∀ e⇐ 𝜎 ⇒ e elaboration of polymorphic expressions
Γ ⊢ e⇔ 𝜌 ⇒ e elaboration of expressions
Γ ⊢ℎ h⇒ 𝜎 ⇒ h elaboration of application heads
Γ ⊢inst e : 𝜎 ⇒ e ; 𝜋 { 𝜎 ; 𝜌r ⇒ er elaboration of application spines
𝜎 ⇒ s elaboration of types
Γ ⇒ G elaboration of typing contexts

Elab-Gen

Γ, 𝑎 ⊢ e⇐ 𝜌 [𝜏 /𝑏] ⇒ e

𝜏 ⇒ t 𝜌 ⇒ r
fv(𝜏) ⊆ dom(Γ, 𝑎)

Γ ⊢∀ e⇐ ∀𝑎.∃𝑏.𝜌 ⇒ Λ𝑎.pack t, e as∃𝑏.r

Elab-iAbs

𝑎 fresh

Γ, x:𝜏 ⊢ e⇒ 𝜌 ⇒ e
fv(𝜏) ⊆ dom(Γ)

𝜌 ′ = 𝜌 [𝑎 / ⌊𝜌⌋x] 𝜏 ⇒ t
𝜌 ⇒ r 𝜌 ′ ⇒ r′

Γ ⊢ 𝜆x .e⇒ 𝜏 → ∃𝑎.𝜌 ′ ⇒ 𝜆x:t.pack ⌊r⌋x, e as∃𝑎.r
′

Elab-App
Γ ⊢ℎ h⇒ 𝜎 ⇒ h

Γ ⊢inst h : 𝜎 ⇒ h ; 𝜋 { 𝜎 ; 𝜌r ⇒ er

Γ ⊢ h 𝜋 ⇔ 𝜌r ⇒ er

Elab-IArg

Γ ⊢∀ e′⇐ 𝜎1 ⇒ e′

Γ ⊢inst e e′ : 𝜎2 ⇒ e e′ ; 𝜋 { 𝜎 ; 𝜌r ⇒ er

Γ ⊢inst e : (𝜎1 → 𝜎2) ⇒ e ; e′, 𝜋 { 𝜎1, 𝜎 ; 𝜌r ⇒ er

Elab-IExist

Γ ⊢inst e : 𝜖 [⌊e : ∃ a.𝜖⌋ / a] ⇒ open e ; 𝜋 { 𝜎 ; 𝜌r ⇒ er

Γ ⊢inst e : ∃ a.𝜖 ⇒ e ; 𝜋 { 𝜎 ; 𝜌r ⇒ er

Elab-IResult

Γ ⊢inst e : 𝜌r ⇒ er ; [] { [] ; 𝜌r ⇒ er

Fig. 8. Judgments and selected rules for elaborating from X into FX.

In addition, we prove that types can still be erased in this language. Let |e| denote the expression e
with all type abstractions, type applications, packs, opens and casts dropped. Furthermore, overload
−→ to mean the reduction relation over the erased language.

Theorem 5.3 (Erasure). If G ⊢ e −→∗ e′, then |e| −→∗ |e′ |.

The proofs largely follow the pattern set by previous papers on languages with explicit coercions
and are unenlightening. They appear, in full, in the appendix.

6 ELABORATION

We now augment our inference rules from Section 4 to describe the elaboration from the surface
languageX into our core FX. The notation⇒ denotes elaboration of a surface term, type or context
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into its core equivalent. Some of our rules appear in Figure 8. The rest appear in the appendix. In
order to aid understanding, we use blue for X terms and red for FX terms.
The rules in Figure 8 allow packing multiple existentials at once, when given a list of types as

the first argument to pack; see rules Elab-Gen and Elab-iAbs. Rule Elab-Gen checks a surface

expression e against an expected type ∀𝑎.∃𝑏.𝜌 . We see that the result of elaboration uses nested
Λ-abstractions and our nested pack notation to produce an FX expression that has the desired
type. Rule Elab-iAbs echoes rule iAbs, producing an FX expression with packs necessary to
accommodate any projections that mention the bound variable x; recall the special treatment of
such projections from Section 4.2.3.

Rule Elab-App elaborates the head h to h, and then calls the ⊢inst judgment. This judgment takes
the elaborated h as an input (despite its appearance on the right of a⇒). This input of an elaborated
expression is built up as the application spine is checked, to be returned in rule Elab-IResult.
In order to build this elaborated expression as we go, rule Elab-IArg elaborates arguments, in
contrast to our original rule IArg; rule Elab-App then no longer needs to check these arguments in
a second pass.14 Rule Elab-IExist is the place where open is introduced, as it open an expression
with an existential type.

The omitted rules all appear in the appendixand broadly follow the pattern set here.

6.1 Tweaking the IExist Rule

In the instantiation judgment for the surface language (Figure 5), rule IExist opens existentials.
That is, given an expression e with an existential type ∃ a.𝜖 , it infers for e the type resulting from
replacing the type variable with the projection ⌊e : ∃ a.𝜖⌋. However, these projections pose a
problem during the elaboration process. Specifically, if we have an application e1 e2 such that
e1 expects an argument whose type mentions ⌊e0 : 𝜖⌋Ðand e2 indeed has a type mentioning
⌊e0 : 𝜖⌋Ðwe cannot be sure that the application remains well-typed after elaboration. After all,
type-checking in X is non-deterministic, given the way it guesses instantiations and the types of
𝜆-bound variables. Another wrinkle is that ⌊e0 : 𝜖⌋ might appear under binders, making it even
easier for type inference to come to two different conclusions when computing Γ ⊢∀ e0 ⇐ 𝜖 .
There are two approaches to fix this problem: we can require our elaboration process to be

deterministic, or we can modify rule IExist to make sure that projections in the surface language
actually use pre-elaborated core expressions. We take the latter approach, as it is simpler and more
direct. However, we discuss later in this section the possible disadvantages of this choice, and a
route to consider the first one.

Accordingly, we now introduce the following new IExistCore and rule LetCore rules, replacing
rules IExist and rule Let:

IExistCore

Γ ⊢∀ e⇐ ∃ a.𝜖 ⇒ e

Γ ⊢inst e : 𝜖 [⌊e⌋ / a] ; 𝜋 { 𝜎 ; 𝜌r

Γ ⊢inst e : ∃ a.𝜖 ; 𝜋 { 𝜎 ; 𝜌r

LetCore
Γ ⊢ e1 ⇒ 𝜌1 ⇒ e1
𝑎 = fv(𝜌1)\dom(Γ)

Γ, x:∀𝑎.𝜌1 ⊢ e2 ⇔ 𝜌2

Γ ⊢ let x = e1 in e2 ⇔ 𝜌2 [Λ𝑎.e1 / x]

Fig. 9. Updated rules to support FX expressions in X types

14Knowledgeable readers will wonder how this new treatment interacts with the Quick-Look algorithm, which critically

depends on waiting to type-check arguments after a quick look at the entire argument spine. The solution is to be lazy: the

elaborated is not needed until after all arguments have been checked. Accordingly, we could, for example, use a mutable

cell to hold the elaborated expression, and then fill in this cell only during the second pass. Our formal presentation here

need not worry about this technicality, however.
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Now, the elaboration process 𝜏 ⇒ t is indeed deterministic, making⇒ a function on types 𝜏 and
contexts Γ. Having surmounted this hurdle, elaboration largely very straightforward.

6.2 A Different Approach

We may want to refrain from using core expressions inside of projections, because doing so
introduces complexity for the programmer who is not otherwise exposed to the core language. To
wit, X would keep using projections of the form ⌊e : 𝜖⌋, where we understand that Γ ⊢∀ e⇐ 𝜖 in
the ambient context Γ, while FX uses the form ⌊e⌋.

It is vitally important that, if our surface-language typing rules accept a program, the elaborated
version of that program is type-correct. (We call this property soundness; it is Theorem 7.1.) Yet, if
elaboration of types is non-deterministic, we will lose this property, as explained above.
This alternative approach is simply to assume that elaboration is deterministic. Doing so is

warranted because, in practice, a type-checker implementation will proceed deterministicallyÐit
seems far-fetched to think that a real type-checker would choose different types for the same
expression and expected type, if any. In essence, a deterministic elaborator means that we can
consider ⌊e : 𝜖⌋ as a proxy for ⌊e⌋. The first is preferable to programmers because it is written in the
language they program in. However, a type-checker implementation may choose to use the latter,
and thus avoid the possibility of unsoundness from arising out of a non-deterministic elaborator.

7 ANALYSIS

The surface language X allows us to easily manipulate existentials in a 𝜆-calculus while delegating
type consistency to an explicit core language FX. The following theorems establish the soundness
of this approach, via the elaboration transformation ⇒, as well as the general expressivity and
consistency of our bidirectional type system.

7.1 Soundness

If our surface language is to be type safe, we must know that any term accepted in the surface
language corresponds to a well-typed term in the core language:

Theorem 7.1 (Soundness).

(1) If Γ ⊢∀ e⇐ 𝜎 ⇒ e, then G ⊢ e : s, where Γ ⇒ G and 𝜎 ⇒ s.
(2) If Γ ⊢ e⇒ 𝜌 ⇒ e, then G ⊢ e : r, where Γ ⇒ G and 𝜌 ⇒ r.
(3) If Γ ⊢ e⇐ 𝜌 ⇒ e, then G ⊢ e : r, where Γ ⇒ G and 𝜌 ⇒ r.

Furthermore, in order to eliminate the possibility of a trivial elaboration scheme, we would
want the elaborated term to behave like the surface-language one. We capture this property in this
theorem:
Theorem 7.2 (Elaboration erasure).

(1) If Γ ⊢∀ e⇐ 𝜎 ⇒ e, then |e | = |e|.
(2) If Γ ⊢ e⇒ 𝜌 ⇒ e, then |e | = |e|.
(3) If Γ ⊢ e⇐ 𝜌 ⇒ e, then |e | = |e|.

This theorem asserts that, if we remove all type annotations and applications, the X expression
is the same as the FX one.

7.2 Conservativity

Not only do we want our X programs to be sound, but we also want X to be a comfortable language
to program in. As our language is an extension of Hindley-Milner, we know that all the conveniences
programmers are used to in that setting carry over here.
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Theorem 7.4 tells us that expanding out a well-typed let remains well typed. However,
if we selectively expand a repeated let, a larger expression may become ill typed. Suppose
we have f ::Int → ∃a. (a, a→ Int) andwrite (snd (f (let x = 5 in x+x))) (fst (f (let x =

5 in x+x))). That expression is a well-typed Int . However, if we inline only one of the lets,
to (snd (f (5 + 5))) (fst (f (let x = 5 in x + x))), we now have an ill-typed expression.
The problem is that our language uses a very fine-grained expression equality relation:
just 𝛼-equivalence. Accordingly, let x = 5 in x + x and 5 + 5 are considered distinct,
and when these expressions appear in types (via existential projections), the types are
different.

The solution is straightforward, if not entirely lightweight: extend the expression
equality relation. Doing so would require a more explicit treatment of equality in our
type inference algorithm (in particular, rule App of Figure 4 would need to invoke the
equality relation), as well as additions to FX to accommodate this new development. It
is not clear whether the added expressiveness are worth the complexity cost, and so we
kept our equivalence relationship simple for ease of presentation.

Aside 2. Selective let-inlining sometimes causes trouble

Theorem 7.3 (Conservative extension of Hindley-Milner). If e has no type arguments or

type annotations, and Γ, e, 𝜏 , 𝜎 contain no existentials, then:

(1) (Γ ⊢𝐻𝑀 e : 𝜏) implies (Γ ⊢ e⇒ 𝜏)

(2) (Γ ⊢𝐻𝑀 e : 𝜎) implies
(

Γ ⊢∀ e⇐ 𝜎
)

where ⊢𝐻𝑀 denotes typing in the Hindley-Milner type system, as described by Clément et al. [1986,

Figure 3].

7.3 Stability

The following theorems denote stability properties [Bottu and Eisenberg 2021]. In other words,
they ensure that small user-written transformations do not change drastically the static semantics
of our programs. The let-inlining property is specifically permitted by our approach to existentials,
and it is a major feature of our type system.

Theorem 7.4 (let-inlining). If x is free in e2 then:

(Γ ⊢ let x = e1 in e2 ⇒ 𝜌) implies (Γ ⊢ e2 [e1 / x] ⇒ 𝜌)

(Γ ⊢∀ let x = e1 in e2 ⇐ 𝜎) implies (Γ ⊢∀ e2 [e1 / x] ⇐ 𝜎)

Interestingly, the system we present here does not support a small generalization of the let-
inlining property, as we explore in Aside 2.
This next theorem tells us that the order variables appear in an existential quantification does

not affect usage sites:

Theorem 7.5 (Order of Quantification does not matter). Let 𝜌 ′ (resp. 𝜎 ′) be two types that

differ from 𝜌 (resp. 𝜎) only by the ordering of quantified type variables in their existential types. Then:

(1) (Γ ⊢ e⇒ 𝜌) if and only if (Γ ⊢ e⇒ 𝜌 ′)

(2) (Γ ⊢∀ e⇐ 𝜎) if and only if (Γ ⊢∀ e⇐ 𝜎 ′)

Lastly, this theorem tells us that extra, redundant type annotations do not disrupt typability:

Theorem 7.6 (Synthesis implies checking). If Γ ⊢ e⇒ 𝜌 then Γ ⊢ e⇐ 𝜌 .
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Γ ⊢∀ e⇐ 𝜎 (Universal type checking)

GenImpredicative

𝜅 fresh 𝜌 ′ = 𝜌 [𝜅 /𝑏]

Γ, 𝑎 ⊢ e : 𝜌 ′ { Θ

𝜌 ′′ = Θ 𝜌 ′

dom (𝜃 ) = fiv (𝜌 ′′)

Γ, 𝑎 ⊢ e⇐ 𝜃 𝜌 ′′

Γ ⊢∀ e⇐ ∀𝑎.∃𝑏.𝜌

Fig. 10. Allowing impredicative instantiation in the ⊢∀ judgment

8 INTEGRATING WITH TODAY’S GHC AND QUICK LOOK

We envision integrating our design into GHC, allowing Haskell programmers to use existential
types in their programs. Accordingly, we must consider how our work fits with GHC’s latest type-
inference algorithm, dubbed Quick Look [Serrano et al. 2020]. The structure behind our inference
algorithmÐwith heads applied to lists of arguments instead of nested applicationsÐis based directly
on Quick Look, and it is straightforward to extend our work to be fully backward-compatible with
that design. Indeed, our extension is essentially orthogonal to the innovations of impredicative
type inference in the Quick Look algorithm.
It would take us too far afield from our primary goalÐdescribing type inference for existential

typesÐto explain the details of Quick Look here. We thus build on the text already written by
Serrano et al. [2020]; readers uninterested in the details may safely skip the rest of this section.

Serrano et al. [2020] explains their algorithm progressively, by stating in their Figures 3 and 4 a
baseline system. That baseline also effectively serves as our baseline here. Then, in their Figure 5,
the authors add a few new premises to specific rules, along with judgments those premises refer to.
Given this modular presentation, we can adopt the same changes: their rule iarg is our rule IArg,
and their rule app-⇓ is our rule App. The only wrinkle in merging these systems is that their
presentation uses a notion of instantiation variable, which Serrano et al. write as 𝜅 . An instantiation
variable is allowed to unify with a polytype, in contrast to an ordinary unification variable, which
must unify with a monotype. Given that impredicative instantiation is not a primary goal of our
work, we choose not to use this approach in our main formal presentation, instead preferring
the more conventional idiom of using guessed 𝜏-types. However, in order to integrate inferred
existentials with Quick Look impredicativity, we must explicitly use instantiation variables in the
rule below.

Since we have a more elaborate notion of polytype, one rule needs adjustment in our system: the
rule implementing the Γ ⊢∀ e⇐ 𝜎 judgment, rule Gen. That rule skolemizes (makes fresh constants
out of) the variables universally quantified in 𝜎 and guesses 𝜏 to instantiate the existentially
quantified variables. In order to allow these instantiations to be impredicative, we must modify the
rule, as in Figure 10.

This rule follows broadly the pattern from rule Gen, but using instantiation variables 𝜅 instead
of guessing 𝜏 . The third premise invokes the Quick Look judgment ⊢ [Serrano et al. 2020, Figure 5]
to generate a substitution Θ. Such a substitution Θ maps instantiation variables 𝜅 to polytypes 𝜎 ;
by contrast, a substitution 𝜃 includes only monotypes 𝜏 in its codomain. The next two premises
of rule GenImpredicative apply the Θ substitution, and then use 𝜃 to eliminate any remaining
instantiation variables 𝜅: the fiv(𝜌 ′′) extracts all the f ree instantiation variables in 𝜌 ′′. Note that
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the range of 𝜃 appears unconstrained here; the types in its range are guessed, just like the 𝜏 in
rule Gen.

With this one new ruleÐalong with the changes evident in Figure 5 of Serrano et al.Ðour system
supports impredicative type inference, and is a conservative extension of their algorithm.

9 DISCUSSION

We have described how our inference algorithm allows users to program with existentials while
avoiding the need to thinking about packing and unpacking. Here, we review some subtleties that
arise as our approach encounters more practical settings.

9.1 No Declarative (Non-syntax-directed) System with Existentials

When we first set out to understand type inference with existentials better, our goal was to develop
a type system with existential types, unguided type inference (no additional annotation obligations
for the programmer), and principal types. Our assumption was that if this is possible with universal
quantification [Hindley 1969; Milner 1978], it should also be possible for existential quantification.
Unfortunately, it seems such a design is out of reach.
To see why, consider f b = if b then (1, 𝜆y → y + 1) else (True, 𝜆z → 1). We can see that f

can be assigned one of two different types:

(1) Bool → ∃a. (a, Int → Int)

(2) Bool → ∃a. (a, a→ Int)

Neither of these types is more general than the other, and neither seems likely to be ruled out by
straightforward syntactic restrictions (such as the Hindley-Milner type system’s requirement that
all universal quantification be in prenex form).

One possible approach to inference for a definition like f is to use an anti-unification [Pfenning
1991] algorithm to relate the types of (1, 𝜆y → y + 1) and (True, 𝜆z → 1): infer the former to have
type (Int, Int → Int) and the latter to have type (Bool, 𝛼 → Int) for some unknown type 𝛼 . The
goal then is to find some type 𝜏 such that 𝜏 can instantiate to either of these two types: this is
anti-unification. The problem is, in this case, 𝛼 : we get different results depending on whether 𝛼
becomes Int or Bool.
We might imagine a way of choosing between the two hypothetical types for f , above, but

any such restriction would break the desired symmetry and elegance of a declarative system that
allows arbitrary generalization and specialization. Instead, we settle for the practical, predictable
bidirectional algorithm presented in this paper, leaving the search for a more declarative approach
as an open problemÐone we think unlikely to have a satisfying solution.

9.2 Class Constraints on Existentials

The algorithm we present in this paper works with a typing context storing the types of bound
variables. In full Haskell, however, we also have a set of constraint assumptions, and accepting
some expressions requires proving certain constraints. A type system with these assumptions
and obligations is often called a qualified type system [Jones 1992]. Our extension to support both
universal and existential qualified types is in Figure 11.

This extension introduces type classes C and constraints Q. Constraints are applied type classes
(like Show Int), and perhaps others; the details are immaterial. Instead, we refer to an abstract
logical entailment relation⊩, which relates assumptions and the constraints they entail. Universally
quantified types 𝜎 can now require proving a constraint: to use e : Q ⇒ 𝜎 , the constraint Q must
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C ::= . . . type class
Q ::= C 𝜏 | . . . constraint
𝜎 ::= 𝜖 | ∀ a.𝜎 | Q ⇒ 𝜎 universally quantified type
𝜖 ::= 𝜌 | ∃ b.𝜖 | Q ∧ 𝜖 existentially quantified type
Γ ::= ∅ | Γ, a | Γ, x:𝜎 | Γ,Q | Γ, ⌊e : 𝜖⌋ typing context

Γ ⊩ Q logical entailment

GenQualified

Γ
′
= Γ, 𝑎,Q1, ⌊e : Q ∧ 𝜖⌋

Γ′ ⊢∀ e⇐ Q ∧ 𝜖 e ∈ e0

Γ
′ ⊢ e0 ⇐ 𝜌 [𝜏 /𝑏]

Γ
′ ⊩ Q2 [𝜏 /𝑏]

Γ ⊢∀ e0 ⇐ (∀𝑎.Q1 ⇒ ∃𝑏.Q2 ∧ 𝜌)

IGiven

Γ ⊢inst e : 𝜖 ; 𝜋 { 𝜎 ; 𝜌r
⌊e : Q ∧ 𝜖⌋ ∈ Γ

Γ ⊢inst e : Q ∧ 𝜖 ; 𝜋 { 𝜎 ; 𝜌r

IWanted

Γ ⊢inst e : 𝜎 ; 𝜋 { 𝜎 ; 𝜌r
Γ ⊩ Q

Γ ⊢inst e : Q ⇒ 𝜎 ; 𝜋 { 𝜎 ; 𝜌r

Fig. 11. Type system extension to support existentially packed class constraints

hold. Existentially quantified types 𝜖 can now provide the proof of a constraint: the expression
e : Q ∧ 𝜖 contains evidence that Q holds. Assumed constraints appear in contexts Γ.15

The surprising feature here is that we have a new form of assumption, ⌊e : 𝜖⌋. This assumption
is allowed only when 𝜖 has the form Q ∧ 𝜖 ′; the assumed constraint is Q. However, by including
the expression e that proves Q in the context, we remember how to compute Q when it is required.

9.2.1 Static Semantics. Examining the typing rules, we see rule GenQualified assumes Q1 as
a given (following the usual treatment of givens in qualified type systems) and also assumes an

arbitrary list of projections ⌊e : 𝜖⌋. This arbitrary assumption is quite like how rule Gen assumes

types 𝜏 to replace the existential variables 𝑏. To prevent the type system from working in an
unbounded search space for assumptions to make, the expressions e must be sub-expressions of
our checked expression e0.
The instantiation judgment ⊢inst must also accommodate constraints. When, in rule IGiven, it

comes across an expression whose type includes a packed assumption Q ∧ 𝜖 , it checks to make sure
that assumptionwas included in Γ. The design here requiring an arbitrary guess of assumptions, only
to validate the guess later, is merely because our presentation is somewhat declarative. By contrast,
an implementation would work by emitting constraints and solving them (that is, computing ⊩)
later [Pottier and Rémy 2005]; when the constraint-generation pass encounters an expression of
type Q ∧ 𝜖 , it simply emits the constraint as a given. Rule IWanted is a straightforward encoding
of the usual behavior of qualified types, where the usage of an expression of type Q ⇒ 𝜎 requires
proving Q.

9.2.2 Dynamic Semantics. An interesting new challenge with packed class constraints is that class
constraints are not erasable. In practice, a function pretty of type Pretty a ⇒ a → String (ğ2.3)
takes two runtime arguments: a dictionary [Hall et al. 1996] containing implementations of the
methods in Pretty , as well as the actual, visible argument of type a. When this dictionary comes
from an existential projection, the expression producing the existential will have to be evaluated.

15Other presentations of qualified type systems frequently have a judgment that looks like 𝑃 | Γ ⊢ 𝑒 : 𝜌 , or similar,

with a separate set of logical assumptions 𝑃 . Because our assumptions may include expressions, we must mix the logical

assumptions with variable assumptions right in the same context Γ.
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For example, suppose we have mk :: Bool → ∃a. Pretty a ∧ a and call pretty (mk True). Calling
pretty requires passing the dictionary giving the the implementation of the function at the specific
type pretty is instantiated at (⌊mk True :: ∃a. Pretty a ∧ a⌋, in this case). Getting this dictionary
requires evaluating mk True. Naïvely, this means mk True would be evaluated twice. This makes
some sense if we think of Q ∧ 𝜖 as the type of pairs of a dictionary for Q and the inhabitant of 𝜖 : the
naïve interpretation of pretty (mk True) thus is like calling pretty (fst (mk True)) (snd (mk True)).
We do not address how to do better here, as standard optimization techniques can apply to improve
the potential repeated work. Once again, purity works to our advantage here, in that we can be
assured that commoning up the calls to mk True does not introduce (or eliminate) effects.

9.3 Relevance and Existentials

One of the primary motivations for this work is to set the stage for an eventual connection between
Liquid Haskell [Vazou et al. 2014] and the rest of Haskell’s type system. A Liquid Haskell refinement
type is exemplified by {v :: Int | v ⩾ 0}; any element of such a type is guaranteed to be non-
negative. Yet what would it mean to have a function return such a type? To be concrete, let us
imaginemk ::Bool → {v :: Int | v ⩾ 0}. This function would return a value v of type Int , along with
a proof that v ⩾ 0: this is a dependent pair, or an existential package. Thus, we can rephrase the
type of mk to be Bool → ∃(v :: Int). Proof (v ⩾ 0), where Proof q encodes a proof of the logical
property q.

However, our new form of existential is different than the others considered in this paper. Here,
the relevant part is the first component, not the second. That is, we want to be able to project out
v :: Int at runtime, discarding the compile-time proof that v ⩾ 0.
The core language presented in this paper cannot, without embellishment, support relevant

first components of existentials. In other words, ⌊e : 𝜖⌋ is always a compile-time type, never a
runtime term. Nevertheless, existing approaches to deal with relevance will work in this new
setting. Haskell’s ∀ construct universally quantifies over an irrelevant type. Yet, work on dependent
Haskell [Eisenberg 2016; Gundry 2013; Weirich et al. 2017] shows how we can make a similar,
relevant construct. Similar approaches could work in a core language modeled on FX. Indeed,
other dependently typed languages, such as Coq, Agda, and Idris support existential packages with
relevant dependent components.

The big step our current work brings to this story is type inference. Whether relevant or not, we
would still want existential packages to be packed and unpacked without explicit user direction,
and we would still want type inference to have the properties of the algorithm presented in this
paper. In effect, the choice of relevance of the dependent component is orthogonal to the concerns
in this paper. We are thus confident that our approach would work in a setting with relevant types.

10 RELATED WORK

There is a long and rich body of literature informing our knowledge of existential types. We review
some of the more prominent work here.

History. Existential types were present from the beginning in the design of polymorphic pro-
gramming languages, present in Girard’s System F [Girard 1972] and independently discovered
by Reynolds [1974], though in a less expressive form. Mitchell and Plotkin [1988] recognized the
ability of existential types to model abstract datatypes and remarked on their connection with the
Σ-types of Martin-Löf type theory [Martin-Löf 1975]. They proposed an elimination form, called
abstype, that is equivalent to the now standard unpack.
Cardelli and Leroy [1990] compared Mitchell and Plotkin’s unpack based approach to various

calculi with projection-based existentials. Their łcalculus with a dot notationž includes the ability
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for the type language to project the type component from term variables of an existential type. At
the end of the report (Section 4), they generalize to allow arbitrary expressions in projections. It is
this language that is most similar to our core language. They also note a number of examples that
are expressible only in this language.

Integration with type inference. Full type checking and type inference for domain-free System F
with existential types is known to be undecidable [Nakazawa and Tatsuta 2009; Nakazawa et al.
2008]. As a result, several language designers have used explicit forms such as datatype declarations
or type annotations to extend their languages with existential types.
The datatype-based version of existentials found in GHC was first suggested by Perry [1991]

and implemented in Hope+. It was formalized by Läufer and Odersky [1994] and implemented in
the Caml Light compiler for ML, along with the Haskell B compiler [Augustsson 1994].

The Utrecht Haskell Compiler (UHC) also supports a version of existential type [Dijkstra 2005],
in a form that does not require the explicit connection to datatypes found in GHC. As in this work,
values of existential types can be opened in place, without the use of an unpack term. However,
unlike here, UHC generates a fresh type variable for the abstracted type with each use of open. As
a result, UHC does not need the form of dependent types that we propose, but also cannot express
some of the examples allowed by our system (ğ3.3).

Leijen [2006] describes an extension of MLF [Le Botlan and Rémy 2003] with first-class existential
types. Like this work, programmers never needed to add explicit pack or unpack expressions.
However, because the type system was based on MLF, polymorphic types include instantiation
constraints and the type-inference algorithm is very different from that used by GHC. In contrast,
our work requires only a small extension of GHC’s most recent implementation of first-class
polymorphism. Furthermore, Leijen does not describe a translation from his source language to an
explicitly typed core language; a necessary implementation step for GHC.

Dunfield and Krishnaswami [2019] extend a bidirectional type system with indexes in existential
types in order to support GADTs. As in this work, the introduction and elimination of existentials
is implicit and determined by type annotations. Existentials are introduced via subsumption and
eliminated via pattern matching. As a result, this type system has the same scoping limitations as
one based on unpack.

In other contexts, if the domain of types that existentials are allowed to quantify over is restricted,
more aggressive type inference is possible. For example, Tate et al. [2008] restrict existentials to
hide only class types and develop a type-inference framework for a small object-oriented typed
assembly language.

Module systems. This paper also relates to work on ML-style module systems. We do not summa-
rize that field here but mention some papers that are particularly inspirational or relevant.

MacQueen [1986] noted the deficiencies of Mitchell and Plotkin [1988] with respect to expressing
modular structure. This work proposed the original form of the ML module system as a dependent
type system based on strong Σ-types. As in our system,modules support projections of the abstracted
type and values. However, unlike this work, the ML module language supports additional type
system features: a phase separation between the compile-time and runtime parts of the language,
a treatment of generativity which determines when module expressions should and should not
define new types, etc, as described in Harper and Pierce [2005]. We do not intend to use this type
system to express modular structure.
F-ing modules [Rossberg et al. 2014] present a formalization of ML modules using existential

types and a translation of a module language into System 𝐹𝜔 augmented with pack and unpack.
Our approach is similar to theirs, in that we also use a translation of a surface language into our
FX. However, because the ML module system includes a phase separation, our concerns about
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strictness do not apply in that setting. As a result they can target the non-dependent language 𝐹𝜔
and use unpack as their elimination form. Rossberg [2015] extends the source language to a more
uniform design while still retaining the translation to a non-dependent core calculus.
Montagu and Rémy [2009] present an extension of System F to compute open existential types.

They introduce the idea of decomposing the usual explicit pack and unpack constructs of System F,
and we were inspired by those ideas to design the type system of our implicit surface language with
opened existentials. Interestingly, for a long time, it was unknown whether full abstraction could
be achieved with strong existentials. Crary [2017] plugged this hole, proving Reynold’s abstraction
theorem for a module calculus based on strong Σ-types.

11 CONCLUSION

By leveraging strong existential types, we have presented a type-inference algorithm that can infer
introduction and elimination sites for existential packages. Users can freely create and consume
existentials with no term-level annotations. The type annotation burden is small, and it dovetails
with programmers’ current expectations around bidirectional type inference. The algorithm we
present is designed to integrate well with GHC/Haskell’s state-of-the-art approach to type inference,
the Quick Look algorithm [Serrano et al. 2020].

In order to prove our approach sound, we include an elaboration into a type-safe core language,
inspired by Cardelli and Leroy [1990] and supporting the usual progress and preservation proofs.
This core language is a small extension on System FC, the current core language implemented
within GHC, and thus is suitable for implementation.

Beyond just soundness, we prove that inlining a let-binding preserves types, a non-trivial
property in a type system with inferred existential types. We also prove that our type-inference
algorithm is a conservative extension of a basic Hindley-Milner type system.

We believe and hope that our forthcoming implementation within GHCÐin active development
at the time of writingÐwill enable programmers to verify more aspects of their programs, even
when that verification requires the use of existential types. We also hope that this new feature will
provide a way forward to integrate the user-facing success of Liquid Haskell with GHC’s internal
language and optimizer.
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