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Abstract

State-of-the-art password guessing tools, such as HashCat and John the Ripper,
enable users to check billions of passwords per second against password hashes. In
addition to performing straightforward dictionary attacks, these tools can expand
password dictionaries using password generation rules, such as concatenation of
words and leet speak. Although these rules work well in practice, creating and
updating them is a labor-intensive task that requires specialized expertise.
To address this issue, in this paper we introduce PassGAN, a novel approach that
replaces human-generated password rules with theory-grounded machine learning
algorithms. PassGAN autonomously learns the distribution of real passwords
from actual password leaks, and generates high-quality password guesses without
any a-priori knowledge on passwords or common password structures. When we
combined the output of PassGAN with the output of HashCat, we were able to
match 51% more passwords than with HashCat alone, showing that PassGAN can
autonomously extract a considerable number of password properties that current
state-of-the art rules do not encode.

1 Introduction

Passwords are the most popular authentication methods. Unfortunately, multiple password database
leaks have shown that users tend to choose easy-to-guess passwords [12, 15, 32], primarily composed
of common strings (e.g., password, 123456, iloveyou), and variants thereof. Password guessing
tools exploit this structure to generate highly likely password guess. However, effective password
guessing is primarily based on carefully-crafted manually-generated rules. Defining these rules
is a labor-intensive task that demands specialized expertise. To address this issue, in this paper
we introduce PassGAN, a new approach for generating password guesses based on Generative
Adversarial Networks (GANs) [17]. PassGAN represents a principled and theory-grounded take on
the generation of password guesses.

Contributions. 1) We show that a properly-trained GAN can generate high-quality password
guesses. In our experiments, we were able to match 1,350,178 (43.6%) of 3,094,199 unique passwords
from a testing set composed of real user passwords from RockYou dataset [50]; 2) To verify the
ability of PassGAN to create unseen passwords, we removed from the testing set those samples that
were present in the training set. This operation resulted in a subset of 1,978,367 passwords out of
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which, PassGAN was able to match 676,439 (34.6%) of the samples.; 3) We show that PassGAN
is competitive with state-of-the-art password generation rules.; 4) With password generation rules,
the number of unique passwords that can be generated is defined by the number of rules and by the
size of the password dataset used to instantiate them. In contrast, PassGAN can output a practically
unbounded number of password guesses. Crucially, our experiments show that with PassGAN
the number of matches increases steadily with the number of passwords generated, Table 1. This
is important, because it shows that the output of PassGAN is not restricted to a small subset of
the password space.; 5) PassGAN is competitive with current state of the art in password guessing
algorithms based on neural networks [34], matching the performance of Melicher et al. [34], (indicated
as FLA in the rest of the paper).; 6) We show that PassGAN can be effectively used to complement
password generation rules. When we combined the output of PassGAN with the output of HashCat,
we were able to guess 51% additional unique passwords compared to HashCat alone.

The ability of PassGAN to autonomously learn characteristics and patterns constituting a password
drew significant attention from several media outlets, see [25, 59, 33, 61, 36, 22, 20]. We consider
this work the first step towards fully automated generation of high-quality password guesses, and to
the best of our knowledge, this work is the first to use GANs for this purpose.

2 Background and Related Work

2.1 Generative Adversarial Networks

Generative Adversarial Networks (GANs) represent a remarkable advance in the area of deep learning.
A GAN is composed of two neural networks, a generative deep neural networkG, and a discriminative
deep neural network D. Given an input dataset I = {x1,x2, . . . ,xn}, the goal of G is to produce
“fake” samples from the underlying probability distribution Pr(x), that are accepted by D. At the
same time, D’s goal is to learn to distinguish fake samples from G from the real ones coming from I .
More formally, on input a simple noise distribution z, the optimization problem solved by GANs can
be summarized as follows:

min
θG

max
θD

n∑
i=1

log f(xi; θD) +

n∑
j=1

log(1− f(g(zj ; θG); θD)) (1)

where the model attempts to minimize with respect to θG, and simultaneously maximize with respect
to θD. The learning phase is considered complete when D is unable to distinguish between the fake
samples produced by G, and the real samples from I. Since the original work by Goodfellow et
al. [17], there have been several improvements on GANs, [45, 2, 3, 49, 55, 19, 31, 41, 60, 35, 43, 51,
42, 4, 26, 37, 9, 13, 65, 62, 46, 24, 7, 40, 6, 11, 23, 38, 66], where each new paper provides novel
improvements in the domain. In this paper, we rely on IWGAN [19] as a building foundation for
PassGAN, being that IWGAN [19] is among the first, most stable approaches for text generation via
GANs.

2.2 Password Guessing

Password guessing attacks are probably as old as password themselves [5], with more formal studies
dating back to 1979 [39]. In a password guessing attack, the adversary attempts to identify the
password of one or more users by repeatedly testing multiple candidate passwords.

Two popular modern password guessing tools are John the Ripper (JTR) [57] and HashCat [21]. Both
tools implement multiple types of password guessing strategies, including: exhaustive brute-force
attacks; dictionary-based attacks; rule-based attacks, which consist in generating password guesses
from transformations of dictionary words [53, 52]; and Markov-model-based attacks [58, 47]. JTR
and HashCat are notably effective at guessing passwords. Specifically, there have been several
instances in which well over 90% of the password leaked from online services have been successfully
recovered [48].

Markov models were first used to generate password guesses by Narayanan et al. [44]. Their
approach uses manually defined password rules, such as which portion of the generated passwords is
composed of letters and numbers. This technique was subsequently improved by Weir et al. [64] with
Probabilistic Context-Free Grammars (PCFGs). With PCFGs, Weir et al. [64] demonstrated how to
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Passwords
Generated

Unique
Passwords

Passwords matched in testing
set, and not in training set
(1,978,367 unique samples)

104 9,738 103 (0.005%)
105 94,400 957 (0.048%)
106 855,972 7,543 (0.381%)
107 7,064,483 40,320 (2.038%)
108 52,815,412 133,061 (6.726%)
109 356,216,832 298,608 (15.094%)

1010 2,152,819,961 515,079 (26.036%)
2 · 1010 3,617,982,306 584,466 (29.543%)
3 · 1010 4,877,585,915 625,245 (31.604%)
4 · 1010 6,015,716,395 653,978 (33.056%)
5 · 1010 7,069,285,569 676,439 (34.192%)

Table 1: Number of passwords generated by
PassGAN that match passwords in the Rock-
You testing set. Results are shown in terms
of unique matches.

Approach (1) Unique Passwords (2) Matches
JTR

Spyderlab 109 461,395 (23.32%)

Markov Model
3-gram 4.9 · 108 532,961 (26.93%)

HashCat gen2 109 597,899 (30.22%)
HashCat Best64 3.6 · 108 630,068 (31.84%)

PCFG 1010 650,695 (32.89%)
FLA (10−10) 7.4 · 108 652,585 (32.99%)

PassGAN 2.1 · 109 515,079 (26.04%)
PassGAN 3.6 · 109 584,466 (29.54%)
PassGAN 4.9 · 109 625,245 (31.60%)
PassGAN 6.0 · 109 653,978 (33.06%)
PassGAN 7.1 · 109 676,439 (34.19%)

Table 2: Number of matches generated by each
password guessing tool against the RockYou
testing set, and corresponding number of pass-
word generated by PassGAN to outperform
each tool.

“learn” these rules from password distributions. This early work has been subsequently extended by
Ma et al. [32] and by Durmuth et al. [15].

The first work in the domain of passwords utilizing neural networks dates back to 2006 by Ciaramella
et al. [10]. Recently, Melicher et al. [34] introduced FLA, a password guessing method based on
recurrent neural networks [18, 56]. However, the primary goal of these works consists in providing
means for password strength estimation. In contrast, PassGAN focuses on the task of password
guessing and attempts to do so with no a-priori knowledge or assumption on the Markovian structure
of user-chosen passwords.

3 Evaluation

3.1 GAN Training and Testing

To evaluate the performance of PassGAN, and to compare it with state-of-the-art password generation
rules, we first trained the GAN, as well as JTR, HashCat, the Markov model, PCFG, and FLA on
a large set of passwords from the RockYou password leak [50].1 Entries in this dataset represent
a mixture of common and complex passwords.The RockYou dataset [50] contains 32,503,388
passwords. We selected all passwords of length 10 characters or less (29,599,680 passwords, which
correspond to 90.8% of the dataset), and used 80% of them (23,679,744 total passwords, 9,926,278
unique passwords) to train each password guessing tool. We refer the reader to the Appendix Section
for further details on the training procedure of each tool. For testing, we computed the difference
between the remaining 20% of the dataset (5,919,936 total passwords, 3,094,199 unique passwords)
and the training test. The resulting 1,978,367 entries correspond to passwords that were not previously
observed by the password guessing tools. This allowed us to count only non-trivial matches in the
testing set.

3.2 PassGAN’s Output Space

To evaluate the size of the password space generated by PassGAN, we generated several password
sets of sizes between 104 and 1010. Our experiments show that, as the number of passwords increased,
so did the number of unique (and therefore new) passwords. Results of this evaluation are reported in
Table 1.

When we increased the number of passwords generated by PassGAN, the rate at which new unique
passwords were generated decreased only slightly. Similarly, the rate of increase of the number of
matches (shown in Table 1) diminished slightly as the number of passwords generated increased. This
is to be expected, as the simpler passwords are matched early on, and the remaining (more complex)
passwords require a substantially larger number of attempts in order to be matched.

1We consider the use of publicly available password datasets to be ethical, and consistent with security
research best practices (see, e.g., [12, 34, 8]).

3



3.3 Evaluating the Passwords Generated by PassGAN

To evaluate the quality of the output of PassGAN, we generated 5 · 1010 passwords, out of which
roughly 7 · 109 were unique. We compared these passwords with the outputs of length 10 characters
or less from HashCat Best64 and gen2, JTR SpiderLab, FLA, PCFG, and Markov model.

In our comparisons, we aimed at establishing whether PassGAN was able to meet the performance
of the other tools. Our results show that, for each of the tools, PassGAN was able to generate a
competitive number of matches, Table 2. However, in many cases it underperformed the best known
methods with respect to the number of passwords needed to achieve a particular number of matches.
This is not unexpected, because while other tools rely on prior knowledge on passwords for guessing,
PassGAN does not. Nonetheless, the results presented in Table 2 depict the effectiveness of PassGAN
as an unsupervised password guessing approach, as well as show that such a GAN based password
guessing learning mechanism can substantially benefit from further improvements.

3.4 Combining the Output of PassGAN with that of other Password Guessing Tools

We also focused our evaluation on the following question: How would the combination of the output
of rule-based password guessing approaches with machine-learning based ones affect the guessing
performance? Our hypothesis was that, although rule-based tools are fast and effective when guessing
passwords that follow the rules on which these tools rely, machine learning tools might be able
to match additional passwords, at the cost of a larger number of attempts. To test this hypothesis,
we removed all passwords matched by HashCat Best64 (the best performing set of rules in our
experiments) from RockYou testing set. This led to a new test set, containing 1,348,300 passwords.
We then calculated how many additional matches PassGAN was able to achieve. With 7 · 109 unique
samples generated, PassGAN was able to match 320,365 (23.76%) passwords from the new testing
set, which translates to an additional 51% passwords matched from the RockYou dataset compared to
HashCat alone. Therefore, our results indicate that combining rules with machine learning password
guessing is an effective strategy, as ML based strategies are able to capture different portions of the
password space.

3.5 Comparing PassGAN with FLA

To investigate further on the differences between PassGAN and FLA, we computed the number of
passwords in the RockYou testing set that PassGAN was able to guess within its first 7 · 109 samples,
and for which FLA required at least 1010 attempts. These are the passwords to which FLA assigns
low probabilities, despite being chosen by some users. Because PassGAN is able to model them, we
conclude that the probabilities assigned by FLA to these passwords are incorrect. Figure 1, (moved to
the Appendix Section due to space limitations), presents our result as the ratio between the passwords
matched by FLA at a particular number of guessing attempts, and by PassGAN within its first 7 · 109
attempts. These results show that PassGAN is able to model a number of passwords more correctly
than FLA. However, this advantage decreased as the number of attempts required for FLA to guess a
password increased, i.e., as the estimated probability of that password decreased. This shows that, in
general, the two tools agree on assigning probabilities to passwords.

4 Conclusions and Remarks

In this paper we introduced PassGAN, the first application of generative adversarial networks (GANs)
to password guessing. In contrast to currents password guessing tools, PassGAN generates highly-
likely passwords without relying on additional information on passwords (e.g., explicit rules), or on
assumptions on the Markovian structure of user-chosen passwords. Our results show that PassGAN
is competitive with state of the art password generation tools: in our experiments, PassGAN was
always able to generate the same number of matches as the other password guessing tools. At present,
PassGAN requires to output a larger number of passwords compared to other tools to achieve the
same number of matches. However, we believe that by training PassGAN on a larger dataset (which
also allows us to deploy more complex neural network structures and more comprehensive training),
the underlying GAN will perform more accurate density estimation, thus reducing the number of
passwords needed to achieve a specific number of matches.
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Appendix

GAN Architecture and Hyperparameters

To leverage the ability of GANs to effectively estimate the probability distribution of passwords from
the training set, we experimented with a variety of parameters. In this section, we report our choices
on specific GAN architecture and hyperparameters.

We instantiated PassGAN using the Improved training of Wasserstein GANs (IWGAN) of Gulrajani
et al. [19]. The IWGAN implementation used in this paper relies on the ADAM optimizer [27] to
minimize the training error, i.e., to reduce the mismatch between the output of the model and its
training data.

Our model is characterized by the following hyper-parameters:

• Batch size, which represents the number of passwords from the training set that propagate
through the GAN at each step of the optimizer. We instantiated our model with a batch size
of 64.

• Number of iterations, which indicates how many times the GAN invokes its forward step
and its back-propagation step [54, 29, 30]. In each iteration, the GAN runs one generator
iteration and one or more discriminator iterations. We trained the GAN using various number
of iterations and eventually settled for 199,000 iterations, as further iterations provided
diminishing returns in the number of matches.

• Number of discriminator iterations per generator iteration, which indicates how many
iterations the generator performs in each GAN iteration. The number of discriminator
iterations per generative iteration was set to 10, which is the default value used by IWGAN.

• Model dimensionality, which represents the number of dimensions (weights) for each
convolutional layer. We experimented using 5 residual layers for both the generator and the
discriminator, with each of the layers in both deep neural network having 128 dimensions.

• Gradient penalty coefficient (λ), which specifies the penalty applied to the norm of the
gradient of the discriminator with respect to its input [19]. Increasing this parameter leads
to a more stable training of the GAN [19]. In our experiments, we set the value of gradient
penalty to 10.

• Output sequence length, which indicates the maximum length of the strings generated by
the generator (G). We modified the length of the sequence generated by the GAN from 32
characters (default length for IWGAN) to 10 characters, to match the maximum length of
passwords used during training.

• Size of the input noise vector (seed), which determines how many random bits are fed as
input to G for the purpose of generating samples. We set the size of the noise vector to 128
floating point numbers.

• Maximum number of examples, which represents the maximum number of training items
(passwords, in the case of PassGAN) to load. The maximum number of examples loaded by
the GAN was set to the size of the entire training dataset.

• Adam optimizer’s hyper-parameters:

– Learning rate, i.e., how quickly the weights of the model are adjusted
– Coefficient β1, which specifies the decaying rate of the running average of the gradient.
– Coefficient β2, which indicates the decaying rate of the running average of the square

of the gradient.

Coefficients β1 and β2 of the Adam optimizer were set to 0.5 and 0.9, respectively, while
the learning rate was 10−4. These parameters are the default values used by Gulrajani et
al. [19].

Our experiments were run using the TensorFlow implementation of IWGAN. We used TensorFlow
version 1.2.1 for GPUs [1], with Python version 2.7.12. All experiments were performed on a
workstation running Ubuntu 16.04.2 LTS, with 64GB of RAM, a 12-core 2.0 GHz Intel Xeon CPU,
and an NVIDIA GeForce GTX 1080 Ti GPU with 11GB of global memory.
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Figure 1: Percentage of passwords matched by FLA at a particular number of guesses, that are
matched by PassGAN in at most 7 · 109 attempts.

Password Sampling Procedure for HashCat, JTR, Markov Model, PCFG and FLA

We used the portion of RockYou dataset utilized to train PassGAN, Section 3.1, as the input dataset
to HashCat Best64, HashCat gen2, JTR Spiderlab rules, Markov Model, PCFG and FLA. The output
passwords from each tool were computed as follows:

• We instantiated HashCat and JTR’s rules using passwords from the training set sorted
by frequency in descending order (as in [34]). HashCat Best64 generated 754,315,842
passwords, out of which 361,728,683 were unique and of length 10 characters or less. Note
that this was the maximum number of samples produced by Best64 rule-set for the given
input set, i.e. RockYou training set. With HashCat gen2 and JTR SpiderLab we uniformly
sampled a random subset of size 109 from their output. This subset was composed of
passwords of length 10 characters or less.

• For FLA, we set up the code from [28] according to the instruction provided at [16]. We
trained a model containing 2-hidden layers and 1 dense layer of size 512. We did not
perform any transformation (e.g., removing symbols, or transforming all characters to
lowercase) on the training set for the sake of consistency with the other tools. Once trained,
FLA enumerates a subset of its output space defined by a probability threshold p. A password
belongs to FLA’s output only if its probability is at least p. In our experiments, we set
p = 10−10. This resulted in a total of 747,542,984 passwords of length 10 characters or less.
Before using these passwords in our evaluation, we sorted them by probability in descending
order.

• We generated 494,369,794 unique passwords of length 10 or less using the 3-gram Markov
model. We ran this model using its standard configuration [14].

• We generated 1010 unique passwords of length 10 or less using the PCFG implementation
of Weir et al. [63].
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