
ACPI VIOT draft v8
July 2020

The Virtual I/O Translation Table (VIOT) describes the topology of para-virtual I/O trans-
lation devices (currently virtio-iommu) and the endpoints they manage. We introduce a new
ACPI table rather than modifying an existing specification, because each IOMMU vendor main-
tain their own ACPI table (IORT for the Arm SMMU, DMAR for Intel VT-d and IVRS for
AMD IOMMU). A para-virtualized IOMMU, as a software component between hypervisor and
virtual machine, is multi-platform and should be maintained conjointly.

1 The VIOT table
The table starts with a standard ACPI header:

Field Length Offset Description
Signature 4 0 ‘VIOT’. Virtual I/O Translation Table.
Length 4 4 Length in bytes, of the entire VIOT.
Revision 1 8 0.
Checksum 1 9 The entire table must sum to zero.
OEMID 6 10 OEM ID.
OEM Table ID 8 16 For the VIOT, the table ID is the manufacture model

ID.
OEM Revision 4 24 OEM revision of the VIOT for the supplied OEM Table

ID.
Creator ID 4 28 The vendor ID of the utility that created the table.
Creator Revi-
sion

4 32 The revision of the utility that created the table.

Node count 2 36 Number of nodes in the table.
Node offset 2 38 Offset from the start of the table to the first node.
Reserved 8 40 0.

The rest of the table is a list of Node count nodes, each describing either endpoints or
translation devices. The first node is located Node offset bytes from the beginning of the table.
Each node has a Length field defining its length, and the following node is located Length bytes
from the beginning of the current node. Nodes must be aligned on 8 bytes.

Each node identifies one or more devices using either their PCI Handle or their base MMIO
(Memory-Mapped I/O) address. A PCI Handle is a PCI Segment number and a BDF (Bus-
Device-Function) with the following layout:

Bits 15:8 Bus number.

Bits 7:3 Device number.

Bits 2:0 Function number.

This identifier corresponds to the one observed by the operating system when parsing the
PCI configuration space for the first time after boot.

Endpoint nodes declare an Output node that corresponds to the offset from the beginning of
the table to the node describing the next translation device that manages these endpoint. They
also declare one or more endpoint IDs that system software uses to identify endpoints when
programing the translation device.

1



1.1 virtio-iommu based on virtio-pci node

A virtio-iommu device based on the virtio-pci transport, identified by the BDF of the virtio
device.

Field Length Offset Description
Type 1 0 3 – virtio-pci IOMMU
Reserved 1 1 0.
Length 2 2 Length of the node in bytes.
PCI Segment 2 4 The PCI Segment number of the virtio-iommu program-

ming interface as returned by _SEG in the namespace.
PCI BDF num-
ber

2 6 Identifier of the PCI device.

Reserved 8 8 0.

1.2 virtio-iommu based on virtio-mmio node

A virtio-iommu device based on the virtio-mmio transport, identified by the base address of the
virtio device. Like other virtio-mmio devices, properties of the virtio-iommu are described with
a LNRO0005 element in the ACPI namespace.

Field Length Offset Description
Type 1 0 4 – virtio-mmio IOMMU
Reserved 1 1 0.
Length 2 2 Length of the node in bytes.
Reserved 4 4 0.
Base address 8 8 Base MMIO address of the device.

1.3 PCI range node

A range of PCI endpoints identified by their BDF number.

Field Length Offset Description
Type 1 0 1 – PCI range
Reserved 1 1 0.
Length 2 2 Length of the node in bytes.
Endpoint start 4 4 First endpoint ID.
PCI Segment 2 8 Identifies the PCI Segment number of the PCI endpoints.
PCI BDF start 2 10 First Bus-Device-Function number in the range.
PCI BDF end 2 12 Last Bus-Device-Function number in the range.
Reserved 2 14 0.
Output node 2 16 Offset from the start of the table to the next translation

element.
Reserved 6 18 0.

The correspondence between a BDF number in the range [BDF Start, BDF End] and its
endpoint ID is a linear transformation: Endpoint ID = BDF - BDF Start + Endpoint start.

2



1.4 Single MMIO endpoint node

A single endpoint identified by its base MMIO address.

Field Length Offset Description
Type 1 0 2 – MMIO Endpoint
Reserved 1 1 0.
Length 2 2 Length of the node in bytes.
Endpoint 4 4 The endpoint ID.
Base address 8 8 Base MMIO address of the endpoint.
Output node 2 16 Offset from the start of the table to the next translation

element.
Reserved 6 18 0.

2 References
ACPI IORT IO Remapping Table, DEN0049D,

https://developer.arm.com/docs/den0049/latest

ACPI DMAR DMA Remapping Table: "Intel®Virtualization Technology for Directed I/O",
http://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/
vt-directed-io-spec.pdf

ACPI IVRS I/O Virtualization Reporting Structure,
http://support.amd.com/TechDocs/48882_IOMMU.pdf

VIRTIO-v1.1 Virtual I/O Device (VIRTIO) Version 1.1. Edited by Michael S. Tsirkin and
Cornelia Huck. 11 April 2019. OASIS Committee Specification 01. https://docs.
oasis-open.org/virtio/virtio/v1.1/cs01/virtio-v1.1-cs01.html. Latest version:
https://docs.oasis-open.org/virtio/virtio/v1.1/virtio-v1.1.html.

Contact: Jean-Philippe Brucker <jean-philippe@linaro.org>

3

https://developer.arm.com/docs/den0049/latest
http://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/vt-directed-io-spec.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/vt-directed-io-spec.pdf
http://support.amd.com/TechDocs/48882_IOMMU.pdf
https://docs.oasis-open.org/virtio/virtio/v1.1/cs01/virtio-v1.1-cs01.html
https://docs.oasis-open.org/virtio/virtio/v1.1/cs01/virtio-v1.1-cs01.html
https://docs.oasis-open.org/virtio/virtio/v1.1/virtio-v1.1.html
mailto:jean-philippe@linaro.org

	The VIOT table
	virtio-iommu based on virtio-pci node
	virtio-iommu based on virtio-mmio node
	PCI range node
	Single MMIO endpoint node

	References

