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Abstract

User-defined data types, pattern-matching, and recursenlkag-
uitous features of Haskell programs. Sometimes a functicalied
with arguments that are statically known to be in constnufdon,
so that the work of pattern-matching is wasted. Even woise, t
argument is sometimes freshly-allocated, only to be imatety
decomposed by the function.

In this paper we describe a simple, modular transformatiahgspe-
cialises recursive functions according to their argumestiahes”.
We describe our implementation of this transformation i ®las-
gow Haskell Compiler, and give measurements that demdastra
substantial performance improvements: a worthwhile 10%\an-
age, with a factor of 10 in particular cases.

Categories and Subject Descriptors  D.1.0 [Programming tech-
nique§: Functional programming; D.3.3 Pfogramming lan-
guagek Processors

General Terms  Algorithms, Languages, Performance.

Keywords Haskell, compilers, optimisation, specialisation.

1. Introduction

Consider the following Haskell function definition:

last :: [a]l] > a

last [] = error "last"
last (x : [1) = x

last (x : xs) = last xs

The final equation is the heavily-used path. Annoyingly,utig
this equation first establishes that is a cons, in order to exclude
the second equation — and then calist recursively onxs. The
first thing Last will do is to analysexs to see whether it is a cons
or nil, even though that fact is already known.

A programmer who worries about this might rewritest as fol-
lows, so that there is no redundant pattern-matching:

last [] = error "last"
last (x:xs) = last’ x xs
where
last’ x [] =x

last’ x (y:ys) = last’ y ys
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Here last’ is a specialised version of the originakst, spe-
cialised for the case when the argument is a cons. The idea of
specialising a function for particular argument “shapesaivery
general one, and is the subject of this paper. In particalarcon-
tributions are these:

e We describe a simple, general program transformation fieat s
cialises functions based on the “shapes” of their arguments
call patterns(Section 3). Since these shapes are constructor
trees, we call it th&pecConstr transformation.

e The basic idea is simple enough, and easy to prove correct.
However, to be effective, it must specialise the right func-
tions in the right way, something that is governed by a set of
heuristics (Section 3.3). In the light of our experience sihg
SpecConstr in practice, we have developed a series of non-
obvious refinements to the basic heuristics (Section 4).

We have implementefipecConstr in GHC, a state-of-the art
optimising compiler for Haskell. The implementation is yer
modular, consisting simply of a Core-to-Core transforomti
and does not interact with any other part of the compiler.
(“Core” is GHC’s main intermediate language.)

We give measurements of the effectivenessspécConstr,
both for the full nofib suite, and for a few kernel array-
fusion benchmarks (Section 5). The results are encouraging
thenofib suite shows a 10% improvement in run time, and the
array-fusion benchmarks run twice as fast or (sometimesinuc
better.

Good compilers have a lot of bullets in their gun; each palkic
bullet may only be really effective on a few targets, but fens-p
grams evade all the bulletSpecConstr is an excellent bullet. It

is cheap to implement (less than 500 lines of code in a compile
of 100,000 lines), and the programs that it hits are well aotyt
knocked for six.

2. Motivation

We begin by giving some further examples that motivate trezne
for call-pattern specialisation of recursive functions.

2.1 Avoiding allocation

Thelast example shows that specialising a recursive function can
avoid redundanpattern matchingbut it can also avoid redundant
allocation Consider this standard function:

drop :: Int -> [a] -> [al
drop 0 xs = Xs
drop n [] = [

drop n (x:xs) = drop (n-1) xs



GHC translates Haskell into a small intermediate languadied
Core which is what the optimiser works on. Here is the transtatio
of drop into Coré, after a bit of inlining:

drop = \n. \xs.
case n of {
I# un —>

case un of {
0 -> xs ;
_ >
case xs of {
1 -> [ ;
(y:ys) -> drop (I# (un -# 1)) ys
i 333

The firstcase takes aparh, which has typdnt. In GHC theInt
type is not primitive; it is declared like this:

data Int = I# Int#

This is an ordinary algebraic data type declaration, sathiatjint
has a single constructa#, which has a single field of typent#
(Peyton Jones and Launchbury 1991). Tk& Has a mnemonic
significance only; the constructa# is just an ordinary constructor
with a funny-looking name. The typt# is a truly primitive type,
however, built into GHC; it is the type of 32-bit finite-pre@n
integer values. So the secordse expression does a perfectly
ordinary pattern-match on to bind un (short for “unboxedn”),

of type Int# to the value oh. Haskell is a lazy language, aanay
be a thunk in which case these expression will evaluate it.

The seconttase expression tests whether or nat is zero, while
the third scrutinisegs to see whether or not it is of forrty : ys);
if so, there is a recursive call tixop, passing(n-1) as argument.
This argument (which must have typet) is built by decrementing
un, using the built-in operator# :: Int# -> Int# -> Int#,
and constructing afint value using the data constructo.

Notice that in every iteration except the laste newly-constructed
Int is immediately de-constructed in the recursive .chilshort,
there is a redundant heap allocation of thet value in every
iteration, leading to increased memory traffic and garbeakector
load. Especially for tight loops, eliminating allocatios highly
desirable.

In the case ofdrop, we want to specialise the function for the
case when the first argument has sh&p# <something>). The
specialised function looks like this:

drop’ :: Int# -> [a] -> [a]
drop’ = \un.\xs. case un of {
0 -> xs ;
_ >
case xs of {
1 -> 01 ;

(y:ys) —-> drop’ (un -# 1) ys }}

Now there is no allocation in the loop — and removing allozati
from the inner loop of a program can be a very big win indeed.

2.2 Stream fusion

sum_append :: [Int] -> [Int] -> Int
sum_append xs ys = sum (xs ++ ys)

We would like to compute the result without constructing ititer-
mediate listxs++ys. The details of their work can be found else-
where in this proceedings, but the key point is this: a foldragion
(sum in this case) is performed bystreamfold, looking something
like this:

data Stream a
= forall s. Stream (s -> Step a s) s
data Step a s = Done | Yield a s
sumStream :: Stream Int -> Int
{-# INLINE sumStream #-}
sumStream (Stream next s)
=go 0 s
where
go z s = case (next s) of
Done -> z
Yield x s’ -> go (z+x) s’

The intention is thasumStream will be inlined at its call sites,
which will instantiate its body with a (perhaps rather coitgtied)
function next and a (perhaps also complicated) initial state
thereby producing a specialised, but still recursive, ieersf go.

In the case ofsum_append, here it is the code that arises after
inlining sum and (++), and simplifying a little (this example is
taken from Coutts et al. (2007a)):

sum_append Xs ys
= go 0 (Left xs)

where
go z (Left xs)
= case xs of
[1 -> go z (Right ys)
x : xs’ -> go (z+x) (Left xs’)
go z (Right ys)
= case ys of
1 -> z

y : ys’ => go (z+y) (Right ys’)

Notice the recursive calls tgo with explicit Left and Right
constructors, and the pattern matching on that same paganifet
we specialisego for these two cases we would get this:

sum_append Xs ys
= go_left 0 xs
where
go_left z xs = case xs of

(] -> go_right z ys

x : xs’ -> go_left (z+x) xs’
case ys of

N -> z

y : ys’ => go_right (z+y) ys’

go_right z ys =

Now the program stands revealegbh_left adds the elements
of xs into an accumulating parameter, and then switches to
go_right, which does the same fors. Stream fusion entwines
these two loops together into one, driven by a state thaindist

These examples are suggestive, but our recent interest inguishes themSpecConstr unravels the loop nest, improving per-

SpecConstr was provoked by the work on stream fusion by Coutts
et al. (2007a,b). Their goal is to eliminate intermediat@addruc-
tures, such as lists or arrays. For example, consider thenfivlig
function:

INB: this display omits all type information, which Core indes
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formance by avoiding the allocation béft andRight construc-
tors. Indeed, withouSpecConstr the performance is no better
than the original list-ful program.

(The alert reader may notice that the good performance of
sum_append relies on the strictness analyser spotting ghatleft



Rename

Optimise

Figure 1: GHC compilation pipeline

and go_right are strict inz, else the accumulating parameter
will build up a chain of thunks. That is indeed true, but itaiso
true of the originalsumStream function. Furthermore, we run the
strictness analysdreforeSpecConstr, so the latter transforms the
program only after strictness analysis has already doneatk.
Hence, one does not need to worry tBaecConstr might obfus-
cate the program, thereby defeating strictness analysis.)

3. Implementing SpecConstr

Itis easy enough to write down the desired result of the foanmsa-
tion, but we also need a general algorithm that implemenits this
case, we can leverage GHC's existing infrastructure to nizdel-
gorithm rather simple. Before discussing tgecConstr imple-
mentation, we therefore digress briefly to describe thisastfuc-
ture.

GHC'’s compilation pipeline looks like Figure 1. The program

such as constant folding, beta reduction, inlining, andrs¢Rey-

ton Jones and Santos 1998). A common pattern is that a sophis-
ticated optimisation, such as strictness analysiSgarcConstr,

does the heavy lifting, but produces a result program thiitésed

with local inefficiencies, of precisely the sort that the lifer can
clean up. The assumption that the Simplifier will run lateikes
each optimisation much simpler to implement.

Returning now toSpecConstr, the implementation proceeds in
three steps:

Step 1: Identify the call patterngor which we want to specialise
the function.

Step 2: Specialisecreate a specialised version of the function for
each distinct call pattern.

Step 3: Propagate:replace calls to the original function with calls
to the appropriate specialised version.

A call patternfor a particular function is a pair
v>P

where is a list of variables, which we call theattern variables
andp is a list of argument expressions. In the caselodp, the
recursive call(drop (I# (un -# 1)) ys) gives rise to the call
pattern

[v,ys] > [I# v, ys]
A call pattern describes the argument templates for whichvesmt

to generate a specialised variant of the function. In the oé&rop,
the call pattern specifies a specialised variant for calth@form

drop (I# (somethiny) (something else

The pattern variables, ys stand for the {somethiny” holes in
this template. The order of pattern variables in a call pattern
is unimportant, and a call pattern is insensitive to coesist-
renaming of its pattern variables.

In the case ofirop, the number of pattern variables happens to be
the same as the number of arguments, but that is not in getheral
case. Toillustrate, here are some further examples of attitms:

[z] > [True, z]
[z, zs] > [(z:29)]

First argument iSrue, second is anything
Sole argument is a cons)(

We now give the details of Steps 1-3 identified above, in oader
increasing difficulty, starting with Step 3.

3.1 Step 3: Propagation

The third step of the algorithm, propagation, replacessdallthe
original function with calls to a specialised version of tbaction,
whenever such a version has been created by the earlier $teps
propagation step is particularly easy to implement. Thedifrar
already provides a general mechanism cakstensible rewrite
rules that allows an optimisation pass (or indeed the prograjmmer
to create a rewrite rule that is subsequently applied by tmp[&ier

as it traverses the program (Peyton Jones et al. 2001). Kigavat
the Simplifier will run subsequently, all Step (3) need dorisate

is parsed, renamed, typechecked, and desugared into thee Cor one rewrite rule for each call pattern. For example, in theeoaf

language. Core is a small, explicitly-typed lambda-calsulan-

drop, from the call patterfuv, ys] > [I# v, ys] Step (3) adds the

guage in the style of System F. The Core program is processedrule:

by a succession of Core-to-Core optimisations, one of wigch
SpecConstr, after which it is fed to the code generator.

A particularly important Core-to-Core pass is thenplifier, which
implements a large set of simple, local optimising transfations,
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{-# RULES
"drop-spec" forall v xs.
drop (I# v) xs = drop’ v xs

#-}



(More precisely, this is the concrete syntax that a programm
would use to express a rewrite rule, but Step (3) directhaime
the rule in its internal form.) The effect of this rule is tivehenever
the Simplifier sees a call matching the left-hand side of the,r

it replaces the call with the right-hand side. The rule agplivhen
compiling the moduleata.List wheredrop is defined, but it
also survives across separate compilation boundaries, so tiyat a
module that import®ata.List will also exploit the rule.

Given a functionf, a call patterfvy, ..., v,] > [p1,-..,pm], and
the corresponding specialised functigh, the rule is trivial to
generate:

forallvl...vn.fpl...pm:f'vl...vn

Incidentally, since Core is an explicitly-typed, polymbip lan-
guage, the pattern variables may, and often do, include type vari-
ables. For example, in its internal form the explicitly-gprule for
drop looks like this:

forall (a:*) (v:Int#) (zs: [al).
drop a (I#v) xs = drop’ av xs

The existing rewrite-rule mechanism therefore completalyes
care of propagation.

3.2 Step 2: Specialisation

The Specialise step looks rather harder, because spatiafisan
have a radical effect. Whole chunks of code can disappear.
example, there is one fewerse expression imdrop’ compared
with drop, and the allocation has disappeared; and inlhst
example, the call terror does not appear ibast’ at all. For-
tunately, the Simplifier makes it easy. Given a function dédin
f = Az1...xzm.e, and call patterms > ps for f, we can construct
the specialised versioff thus:

f=Xvi... do,. elpi/z1,...,pm/Tm]

where the notatior[p/z] means the result of substitutingfor x
in e. In our now-familiardrop example, with call patterfv, ys]
[I# v, ys], we get

Fo

drop’ = \v.\ys. <body>[I# v/n, ys/xs]

where<body> is the Core code given near the start of Section 2.1.
Of course, this code isiggerthan the original definition, since we
are substituting termp, for variablesv;. But the whole point is
that we do this precisely when (we believe that) the Simpplifigi
subsequently be able to simplify the substituted body.

Inthe case ofirop, for example(case n of ...) inthe original
drop becomes(case (I# v) of ...) in the substituted body,
so the case expression can be eliminated, leaving

drop’ :: Int# -> [a] -> [a]
drop’ = \v.\xs. case v of {
0 -> xs ;
_ =>
case xs of {
1 -> 1 ;

(y:ys) -> drop (I# (v -# 1)) ys }}

At this stagedrop’ callsdrop. However, the Simplifier can apply
the rewrite rule"drop-spec" that we constructed in Step (3), and
that “ties the knot” to give the self-recursive code fafop’ given

at the end of Section 2.1.

In short, Step (2) is extremely simple: just make a fresh cufipe
right-hand side of the function, instantiated with the gqaltterns.
The Simplifier will do the rest.
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3.3 Step 1: Identifying call patterns

Now we turn to the first step, that of identifying the call jaits
for which we want to specialise each function. Here is theo$et
heuristics that we used initially: we treat ac@flei...e,) as a
specialisable call if all of the following conditions hold:

H1 The functionf is bound by a definition of the form

(a>0)

That is, the lambdas are explicit, and the function has arity

f=Ax1...2q.€

H2 The right hand side is “sufficiently small”. In our implemen-
tation this size threshold is controlled by a flag.

H3 The functionf is recursive, and the specialisable call appears
in its right-hand side.

H4 All f’s arguments are supplied in the call; thahis$> a.
H5 At least one of the argumengs is a constructor application.
H6 That argument isase-analysed somewhere in the body fof

We can only specialise functions whose definitions are csttyi
visible (H1). For example, iff is lambda-bound, then even if we
find a call in whichf is applied to structured arguments, we cannot
specialisef’s definition. The further requirement thélks definition
has explicit lambdas allows us to establish whether or ndt§H
hold. For example, the definition

f = head ys
is not specialisable.

We specialise onlyecursivefunctions (H3), because they represent
loops. A non-recursive function is often specialised byninlg. A
large function will not be inlined, however, so it might be nvo
considering specialising non-recursive functions cafitech within
loops; but we have not yet done so.

For such recursive functions, we specialise only calls tbumthe
body of the function itself (H3 again). Calls from outside filanc-
tion start the loop; calls in the body are part of the loop. &toer,
to keep things simple we require that the call is saturateat; is,
if the function definition looks likef = Az ...x..e then the call
has at least arguments (H4).

The essence of call-pattern specialisation is that one oe Qu-
ments of the call is a constructor application (H5). Howgetteere
is no point in specialising the function for a call patternass the
specialised version can take advantage of the knowledget e
argument’s shape, and that is what (H6) is about. Take a finacy
tion f = Az.e, for example. The body of the specialised function
is e[p/x], wheree is the body of the original function, andis a
constructor application. This is only going to be an improeat if
some, or preferably all, of the occurrenceszoin e are the scru-
tinee of acase expression, because then iwse expression can
be eliminated, and the constructor application need nexeardn-
structed. For example consider:

f xy = (case x of { Just v -> v; Nothing -> 0 })
(f (Just y) (y+1))

For (H5) we note that the recursive call has the construgber a
plication (Just y) as its argument; while for (H6) we note that
£ decomposes its first argument withcase expression. Notice,
however, that the deconstruction-ofeed not lexically enclose the
recursive call; indeed it need not be certain to be evaluatesdl.
Specialisation still eliminates thease, regardless. In our current
example we get (after some simplification):



{-# RULE "fs1" forall y w. £ (Just y) w =
f2 vy=v: £y (y+1)

£f7 y w #-}

The call-pattern-identification algorithm (Step 1) theref works
in two phases, as follows:

Step 1.1: It traverses the program, gathering two sorts of informa-
tion:

(a) Call instancesthat is, the function together with its actual
arguments (i.e. not yet turned into cphtterns.

(b) Argument usagethat is, information about which argu-
ments are scrutinised yase expressions.

Step 1.2: At the definition site for a functiorf it combines (a)
the call-instance information fgf with (b) the argument-usage
information that describes hoy uses its arguments, to make
thecall patternsfor which f will be specialised.

For example, consider a recursive functipr= \z1x2.e. Suppose
that ine we find a call(f (Just v) (p,q)), where both arguments
are constructor applications. Suppose further that theraegt-
usage information frone indicates that onlyr; is scrutinised by
a case expression. Then it would be fruitless to specialiseran
so we generate the call pattemn w] > [Just v, w], wherew is a
fresh pattern variable.

Pattern variables are also used in call patterns in placa$ pf
the call that do not take the form of constructor applicatioRor
example, consider the cdlf (Just x) (g x)). It would be perfectly
correct to specialis¢ for the call pattern

l9,z] > [Just , g z]

But it would be foolish to do so, because the specialisedu@isf
f cannot usefully exploit the knowledge that its second argum
is a function application. Instead, when turning a callanse into
a call pattern, GHC abstracts each sub-expression of théhaals
not a constructor application by a pattern variable. In oamneple,
the derived call pattern would He, w] > [Just z, w].

Lastly, in step 1.2, GHC eliminates duplicate call pattemsdulo
a-conversion of course, since nothing is gained by making two
identical specialisations of the same function.

3.4 Summary

This concludes the overview of ttpecConstr transformation.
The transformation is implemented in GHC, which is itselftten
in Haskell. As a way to make the earlier discussion more aecr
here is the type signature of the madpecConstr function in
GHC'’s implementation:

specExpr :: ScEnv -> CoreExpr
-> (ScUsage, CoreExpr)

data ScEnv
= SCE { sc_size

:: Int,
sc_how_bound ::

Map Id HowBound }

data HowBound = SpecFun | SpecArg

type ScUsage = (Calls, ArgUsage)

Calls =
Call

Map Id [Calll
[CoreExpr]

type
type

type ArgUsage = Set Id

331

The functionspecExpr takes &oreExpr and an environment that
gives information about the context of the expression. tiimes

a transformed expression, along with usage informationtypé
ScUsage) that describes how the expression uses its free variables.

The environmengcEnv has two fields:
e sc_size, the (fixed) size threshold for specialisation (H2).

e sc_how_bound, a finite mapping that identifies specialisable
functions @pecFun), and their argumentsSpecArg). This
mapping is extended in the obvious way when the transforma-
tion moves inside the body of a specialisable function (Ha).
is GHC's data type for identifiers.

The usage informationScUsage has two components: call in-
stances @alls) and argument usag@éxgUsage). The former is
simply a finite mapping from a specialisable functiorsfgcFun)
to a list of its calls, each represented by a list of argumenite
latter is a set of the identifiers (identified 8pecArgs) that are
scrutinised by &ase expression.

4. Refining the basic scheme

The alert reader will have noticed th#tte particular choice of
call patterns does not affect correctne¥¢e can specialise for too
many call patterns (so that the specialisations go unusedpdew
(so that worthwhile optimisation opportunities are migsduit in
either case the program will still run correctly. Our goatasselect
call patterns for which useful optimisation opportunitiedl arise.

So only Steps 2 and 3 affect correctness, and it is easy t@prov
that they are in fact correct. Step 2 simply adds a new functio
definition, which has no effect on the meaning of the program,
the only question is whether the rewrite rule created in tép
correct. For a functiorf = Az: ... x.,.e, and call patterme>p, the
rule looks like:

foralliu...vn.f]n,..pnl::f/vl...vn

Does the equality claimed by the rule hold? The left-hane sid
the rule is, by3-reduction, equal te[p/z]. The definition off’ is

f' = Avi...vm.e[p/7Z], s0 the right-hand side of the rule is also
equal toe[p/], and we are done.

Matters are much less cut-and-dried when it comes to idéngjf
call patterns (Step 1). We have spent considerable timenguni
the choice of call patterns in the light of experience, anesth
refinements are the subject of the rest of this section. Rdraem
they are all optional!

4.1 Variables that have known structure
Consider this function:

finx=...(case x of (p,q) > f1 py)...
where
y = (n,True)

Although the argumenén, True) does not appediterally in the
call, it is obvious that we would like to record a call pattgsnn] >
[p, (n,True)], in which the second argument ofis a pair whose
second component &rue.

A very similar situation arises when the recursive call gsdn a
branch of acase expression, thus:
f2 n x =

case x of { (p,q) -> ... (f2 mx)... }



Again, although the second argument of the recursive caibis
literally a constructor applicatiorx, is known to be a paitp,q) at
the moment of the call. So it is desirable to record the catigpa
[m,p,q]>[m, (p,@)].

A third situation is a call like this:

...f3 (let x = h y in (x,x))...

Again, £3 is not literally applied to a pair, but despite the interven-
ing let it is clear thatf3 could usefully be specialised for the call

pattern[p, q] > (p,q).

Incidentally, the reader might wonder why the Simplifier slowt
instead eliminate thaet in the first place. It cannot substitute
(h y) for x, because that would duplicate the callmofAlterna-
tively, it could float thelet outwards, to give this:

...let x = h y in £3 (x,x)...

Indeed it will do so if£3 is strict, but not otherwise, because if
£3 is lazy the transformed program risks allocates two objébes
thunk for (b y) and the painx,x)) instead of one (the thunk for
let x = h y in (x,x)).

To summarise, here is the refinement:

R1: when collecting call patternsgpecConstr should take ac-
count of

¢ Variables that ardet-bound to a constructor application
(example:£1).

¢ Variables that have beegase-analysed by an enclosing
case expression (exampl&2).

e Arguments that are constructor applications disguised by

enclosinglets (examplef£3).

data Maybe a = Nothing | Just a

£f5 :: Int -> Maybe Int -> Int
f6 n x = case x of
Nothing -> n
Just p -> ...(f5 m x)...

Although £5 is strict, GHC will still pass the argument boxed.
However, theSpecConstr transformation can spot that, at the
recursive call,x is always of form (Just p), and can make a
specialised version df5 that passep alone, eliminating thease
expression altogether.

In concrete terms, th€pecConstr data structures sketched in
Section 3.4 are modified as follows:

e The environmen$cEnv is augmented with a field that describes
the shape of any known variables:

data ScEnv = SCE { ...; sc_cons :: ShapeMap }

type ShapeMap = Map Id (DataCon, [CoreExpr])

That is, ScEnv is extended with new fiel&c_cons of type
ShapeMap, which maps an identifier to its shape (if known).
The typeDataCon is GHC's data type representing a data
constructor.

¢ The call-instance information must be augmented to capigre
ShapeMap at the call site:

data Call = Call ShapeMap [CoreExpr]

For example, int5 above, theshapeMap would be augmented in
the Just branch of thecase with the mappingx — Just p|. The
Call record collected from the body @b, will look like

Call [x — Just p| [m,x]

Exactly the same three refinements must also be made to the Sim4.2 Nested structure

plifier's rule matcher. For example, the call patternfarwill gen-
erate a rewrite rule looking like this:

{-# RULES
"f2-spec" forall m p q. f2 m (p,q) = f2° mp q
#-}

The rule matcher embodied in the Simplifier must spot thattie
in the right hand side of2 matches this rule. Similarly, the rule
matcher should spot that the call

f2 m (let x = h y in (x,x))

is also an instance of rulg2-spec, and rewrite it to
let x =h y in f2’ m x x

Notice that these refinements to the rule matcher are usafallf
rules, not only for those generated ®yecConstr.

A reader who is familiar with Haskell may also notice tHat is
strict inx, and so GHC's strictness analyser will makeuse call-
by-value and, furthermore, will pass two components of thg p
separately to the function, thereby achieving the sametedfecall-
pattern specialisation. But th&pecConstr transformation deals
with two cases that leave the strictness analyser helféss, the
function may not be strict:

f4 True nx =n
f4 False n x = case x of

(p,q) -> ...(f4 cm x)...

Second, the argument may not be of a single-constructor type
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Consider this function:

fx= ... (f (Just (x:xs8)))

Here, the argument td is a nestedconstructor application. It
is obviously attractive to specialise for the nested calitgpa
[z, zs] > [Just (z:xs)]. However, this apparently-simple refine-
ment complicates (H6): we only want to specialisir the nested
call pattern iff not only case-analyses, butalso case-analyses
the argument of th@ust.

In general, then, we must record all the evaluation thaperforms
on its arguments, anywhere in its body. Here is a more couglec
example:

data T = A (Either Bool Bool) | B (Int,Int)
data Either a b = Left a | Right b

g :: T -> Int
g (A (Left p))
g (A (Right True))
g (A (Right False)) = ...
g (B x) = ...

Here are some call patterns fgralong with whether we would like
to specialisgg for that pattern:

[p] > A (Right p) Yes
[|>A (Right True) Yes
[|>A (Left True) No: g does not decompose tBeol
[z]>Bz  Yes
[z,y]>B(z,y) No:g does not decompose the pair



So we must extract usage information frgfa body that says:
e g’s argument is case-analysed
o Ifitis of form A z, thenz is case-analysed:
= |f z has form(Left p) thenp is not analysed further.
* |f x has form(Right ¢) thenq is case-analysed.
e Ifitis of form B z, thenz is not further analysed.

In this example, all the pattern matching is done at the “top”

g, but that need not be the case; we have seen earlier examples i

which thecase expressions are nested inside the function, and/or
passed as arguments to other function calls in the body.

R2: when collecting argument-usage informati®pecConstr
should recordhestedpattern matches within the expression.

In concrete terms, rather than simply accumulatingetof the

variables that are case-analys&gecConstr must accumulate,
for each variable, evaluation information about each [sgata
constructor to which that variable might evaluate. This isage
where writing the code is easier than describing it infotgnal

type ArgUsage = Map Id ArgOcc
data ArgOcc = ArgOcc (Map DataCon [Maybe ArgOccl)

For each variable we accumulate a finite map that gives informa-
tion of z's occurrences. It is in the domain of thargUsage map,
thenz is scrutinised; otherwise it is not. If is in the ArgUsage
map, itsArg0Occ is a finite map that summarises, for each data con-
structor inz's type, how the pattern-bound arguments of that data
constructor are used, usifigthing to indicate that the argument
is not scrutinised. In our exampleabove, theArgOcc for g's ar-
gument would look like this

Left + [Nothing]
A— . True — []
Right — { False — [] }

B +— [Nothing]|

It is easy to define functions that take the union of th@Occ
values, so that thergUsage from different sub-expressions can be
merged as we move back up the tree.

4.3 Specialisation fixpoints
Consider this recursive function:

f :: Either Int Int
f (Left n) (p,q) =
f (Right n) x =

-> (Int,Int) -> Int

f (Right n) (q,p)

if n==0 then fst x
else f (Left (n-1)) x

The function is somewhat contrived, in the interests of iyev
and we have again taken the liberty of using pattern-magchin
definitions instead of thease expressions that GHC really uses.
From the right hand side df we get two call patterns:

[n,p, q] > [Right n, (q,p)]
[m, z] > [Left m, z]
Specialisingt for these patterns gives the functions:
-- Specialise f (Right n) (q,p)

fi n q p = if n==0 then fst (q,p)
else £ (Left (n-1)) (q,p)

2We have left out a couple dfust constructors to reduce clutter
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-- Specialise f (Left n) x
f2 n (p,q) = £ (Right n) (q,p)

(We have dropped some dead code here, although in practte th
would not be done until the simplifier runs in Step 3.) A cuysor
examination shows that the specialised functiarhas anewcall
pattern forf, namely[m, p, ¢|>[Left m, (g, p)]. On reflection, itis
unsurprising that specialising a function may give risegtmore-
specialised call patterns from its right-hand side. If wealisef

for this pattern too, we get:

-- Specialise f (Left m) (q,p)
f3mqp =£f (Right m) (p,q)

The call pattern from the right-hand side of this specigiisais
[m, q,p] > [Right m, (p, ¢)]; and this one is the same as the call
pattern forf 1. So we have reached a fixed point.

After the simplifier runs, and propagates the specialisesiors to
their call sites, we get this resulting program:

f (Left n) (p,q) =flngqgp
f (Right n) x = if n==0 then fst x
else f2 (n-1) x

fi n q p = if n==0 then fst (q,p)
else £3 (n-1) q p

f2 n (p,q) =flnqgp

f3mgp=£flmpgq

There is no construction and deconstructionLeft andRight
inside the loop; and once the pair is evaluated for the finsé fit is
never evaluated again.

The refinement we need is this:

R3: when specialising a function definition, collect new calt-pa
terns from its specialised right-hand side.

This refinement is easy to implement: we must simply call
specExpr on each specialised copy of the function. In practice,
instead of a two-pass algorithm — substitute and then slseia
— GHC extendsscEnv with one more field, a substitution. Then
specExpr substitutes and specialises at the same time, which turns
out to be quite convenient.

Is there any guarantee that this iterative process willlreafixed
point? Yes, there is. Remember that we never specialiseciidun
for call patterns that are “deeper” than thegUsage information,
and this information is invariant across all the speciaiises.

4.4 Mutual recursion and non-recursive functions

So far we have only considereelf-recursive functions (H3). But
mutual recursion is quite common, and gives rise to no rdét di
culty. Consider a recursive group

;... fn=en

We simply look for call instances fofi, not only ine; but also
in e2...e,. Then we derive call patterns from those calls, and
specialisef; for those call patterns, just as before.

rec { fi=e1; ...

R4: when gathering call instances for a recursive functfofook
in all definitions of theletrec in which f is defined.

This optimisation turned out to be important in practicecdugse
GHC sometimes splits a self-recursive function into two uadly-
recursive parts. Here is an example:



foo :: Maybe Int -> Int

foo Nothing =0
foo (Just 0) = foo Nothing
foo (Just n) = foo (Just (n-1))

This does not look mutually recursive, but GHC lifts the dans
sub-expressiofifoo Nothing) out of the loop (Peyton Jones et al.
1996), to give this mutually-recursive pair:

1vl = foo Nothing

foo Nothing 0

foo (Just 0) 1vl

foo (Just n) foo (Just (n-1))

In this case, nothing is gained by this transformation, esinc
(foo Nothing) is evaluated only once in the loop, but GHC is
not clever enough to spot this.

5. Results

We implementedpecConstr, including all the refinements de-
scribed above, in the Glasgow Haskell Compiler (as at March
2007). Our implementation comprises some 475 lines of Haske
It is a straightforward Core-to-Core pass, which readibptslinto
GHC'’s compilation pipeline.

We measured its effectiveness in two ways. First, we ran the e
tire nofib benchmark suite with thBpecConstr transformation
switched off, and then again with it switched on. All othettiop
misations were enabled@2). The results are shown in Figure 2.
The minimum, maximum and geometric means are taken over all
91 programs in the suite, but the table only shows progranaseh
allocation changed by more than 2% or whose runtime changed b
more than 5%. We place little credence in small changes itimen
because they are hard to reproduce, whereas the allocajimedi
are repeatable. A runtime change of “-” therefore means ttheat
runtime was too short to report a meaningful change. We clethpi
the entire set of Haskell libraries in the same way as thehraack
program itself (i.e. with or without runningpecConstr, respec-
tively).

These figures show a consistent increase in binary size olva fe
percent, which is not surprising since we are duplicatingeco
Some programs, such aseens andmandel2 show a dramatic
decrease in allocation. Most others show much smaller asang
(remember that many are suppressed altogether from theefigur
but alas a handful show a noticeable increase. We investigate

of these fibheaps in detail, and found that the increase was due to
reboxing, which we discuss in Section 6.1. Neverthelesstime
almost invariably decreases, with a geometric mean of 10%.

The second way in which we evaluat&skcConstr was by apply-
ing it to some small array-fusion examples, taken from workhie
Data Parallel Haskell project (Chakravarty et al. 2007).tdék a
set of five example pipelines of array operations that shfudd to
make a single loop, and tried them with and withSpécConstr.
The results are dramatic, and are shown in Figure 3. Perfucena
is at least doubled, and in one case is multiplied by 10. Heoné
of the pipelines:

pipel :: UArr Int -> UArr Int -> UArr Int
pipel xs ys = mapU (+1) (xs +:+ ys)

It could hardly by simpler: add the two arrays andys element-

wise, and then increment each element of the resulting .af@y
good performance it is essential that we eliminate the in¢eliate
array. AUArr Int is an array of unboxed integers, so the fused
loop will run alongxs and ys adding corresponding elements,
incrementing the result, and writing it into the result grrén
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Program| Binary size  Allocation Run time
% increase % increase % increase
anna +5.5% +0.5% -9.0%
ansi +3.2% -10.1% -26.4%
atom +3.1% -0.1% -12.8%
bernouilli +3.3% -2.0% -15.1%
boyer +3.2% +0.0% -16.4%
boyer2 +3.2% +3.7% -
calendar +3.2% +0.6% -17.9%
cichelli +3.3% -2.2% -2.6%
circsim +3.0% -0.7% -5.1%
clausify +4.7% -6.8% -5.5%
complab_zift +3.8% +0.2% -16.4%
compress +3.3% +0.0% -19.0%
compress2 +8.7% -2.2% -13.7%
constraints +3.1% -0.6% -5.8%
exp38 +3.1% +0.0% -18.6%
fft +2.9% -1.5% -5.2%
fibheaps +2.8% +2.0% -2.5%
fulsom +2.8% -0.3% -10.8%
gamteb +2.9% -8.9% -
gcd +3.3% -10.6% -10.2%
genregexps +3.2% +0.0% -6.4%
genfft +3.0% -0.5% -17.0%
ag +3.4% +11.0% -
ida +3.5% -0.5% -27.9%
integer +3.2% -2.3% -11.2%
knights +3.2% +0.0% -8.5%
Icss +3.3% -0.0% -9.2%
life +3.2% +0.0% -14.3%
lift +3.3% +2.7% 0.00
listcompr +3.0% +0.1% -20.4%
listcopy +3.0% +0.2% -22.1%
mandel2 +3.5% -67.3% -
multiplier +3.2% +0.0% -12.6%
parstof +2.8% -2.3% 0.01
pic +3.0% -5.6% 0.01
power +3.6% -4.6% -25.0%
primes +3.1% +0.0% -8.7%
primetest +3.7% -4.8% -0.4%
puzzle +3.2% +0.0% -11.2%
queens +3.1% -79.5% -38.5%
rewrite +3.4% -0.0% -6.1%
rsa +3.8% -8.5% -
scs +3.0% -3.6% -9.7%
simple +2.9% -0.0% -10.5%
solid +2.8% +0.4% -7.2%
sphere +3.0% -2.0% -8.9%
symalg +5.2% -2.9% 0.02
transform +3.8% +0.3% -13.0%
typecheck +2.9% +0.4% -6.2%
wang +3.0% +0.3% -20.3%
wheel-sieve2 +3.1% +0.0% -9.5%
...and another 40 programs...
Min +2.8% -79.5% -38.5%
Max +8.7% +11.0% +3.7%
Geometric Mean +3.4% -3.7% -10.5%

Figure 2: Effects of SpecConstr on nofib programs




Runtime (ms) Runtime

Program| without with % increase
pipel 506 205 -60%
pipe2 159 77 -51%
pipe3 284 114 -60%
piped 545 70 -87%
pipe5 6,761 720 -89%

Figure 3: Effects of SpecConstr on array-fusion pipelines

the fused loop, the increment is practically free, but thisra
tremendous loss of performance if instead we allocate ahd fil
an intermediate array. Array fusion is carried out using shene
stream paradigm as that described in Section 2.2, but ssfoates
fusion is much more important.

(Indeed that is also the weakness of the fusion approadhrdab
fuse can turn a good program into a bad one, yet that failugdini
be due to an obscure and hard-to-predict interaction ofragétion
heuristics. It remains to be seen whether array fusion candme
reliable and robust enough that this problem does not showm up
practice, but that is a challenge for another day.)

6. Further work

In Section 4 we described a series of refinements to the basic
scheme. However we have also encountered shortcomingsrin ou
heuristics that are not so easy to fix, and we collect that rexpee
here.

6.1 Reboxing

So far we have presented the advantages of specialisatibheBe
is a function for which matters are more ambiguous:

f (Int,Int) -> [Int]

f x=hzx : case x of (p,q -> f (p+1,q)

The recursive call td is a constructor, and the argumeris indeed
decomposed inside the function, so our heuristics say wealgho
specialise it. Here is the specialised function:

f1 ::
f1 pq=nh (p,q

We see good news1 does not allocate the paip+1,q) at the
recursive call tof, asf did. But we see countervailing bad news:
£1 allocates the paifp,q) at the call toh, which £ does not. So,
matters are no worse than before, and we have eliminateththwe
but they are not as much better as we might have expected.

Int -> Int -> [Int]
1 f1 (p+1) q

The problem is that the argumestis used inf both as a case
scrutinee,and as a regular argument to an unrelated function
Hence, if we pass the argument in its constituted partsndq,

we may need to re-box them before passing ihtdVe call this
the “reboxing problem”. In the example above, allocatiorswa
worse, and the code was shorter, so specialisation is piobtlb

a good idea. Alas, there are other examples where allocéion
increasedby SpecConstr due to reboxing, and so specialisation
would be a Bad Thing — and it is not easy to predict exactly when
the problem will occur. One possibility is to modify (H6) tu

H6’ Specialise on an argumentonly if x is only scrutinised by a
case, and is not passed to an ordinary function, or returned as
part of the result.

Sadly, this is too conservative. Here is a slightly contiezample:
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f ::
fxn

Maybe Int -> Int -> Int
= case x of
Nothing -> 0O
Just m -> if n==0 then f x (n-1)
else m

Herex occurs passed as a regular argument £ itgelf! So (H6")
would disable specialisation on the grounds that we do nait wa
to risk reboxingx. But if we do specialisef for the first argument
beingJust m, the specialised function will not, in fact, rebox the
argument. A simple-minded analysis risks throwing the baby
with the bathwater.

Our current implementation dpecConstr simply ignores the
reboxing problem. Close inspection reveals that reboxmghe
reason that some programs allocate more heap $yitleConstr
enabled, as we saw in Section 5. We need a more sophisticated
analysis of argument usage, so that we can get (most of) the wi
without risking losses from reboxing.

6.2 Function specialisation
Here is an example that arose in a real program.

the_fun ::
the_fun x

[a]l] —> Step a [al
...non-recursive...

getA :: [[a]l]l -> [a]

getA [1 = []

getA (x:xs) = getB the_fun x xs

getB :: ([al -> Step a [al) -> [a] -> [[al]l -> [a]
getB f x xs = case (f x) of

Done -> gethA xs
Yield y ys -> y : getB f ys xs

Here, the_fun is a non-recursive function, and ongetA was
called elsewhere in the program. It would obviously be pabfi¢ to
specialisggetB for the case when its first argumenttise _fun, SO
thatthe_fun could be inlined in the specialised copy. This paper
has focused on specialising functions for particutanstructor
arguments, but here we want instead to specialise on a ylartic
functionalargument. Doing so is of more than theoretical interest:
the fragment above arose when compiling the expression

concatMap (map (+ 1)) xs

using the stream-fusion techniques of Coultts et al. (2007a)

Specialising for function arguments is more slippery thandon-
structor arguments. In the example above the argument wias-a s
ple variable but what if it was instead a lambda term? Showdd w
generate a RULE like this?

FQz...)

The trouble is that lambda abstractions are much more &algén
constructor applications, in the sense that simple transitons
may make two abstractionieok different although they have the
same value. So while we could generate such a rule, thereoisda g
chance that it will never match anything!

e

An alternative approach might be to specialise only on fionet
valuedvariables and perhaps also partial applications thereof. In
the example above, that amounts to treatihg_fun very similarly

to a nullary constructor. We have not yet followed this ide@tigh

to its conclusion, but it looks promising.



6.3 Join points

Our heuristic (H3) also only considereecursivefunctions. How-
ever a recursive function may havean-recursivdunction defined
inside it. For example:

fxy=letgp=...(£Cp...
in case x of
A p -> g True
B q -> g False

C ->if y then ... else ...

Here,g is a local, non-recursive function defined inside the recur-
sive functiontf. In fact, g is what GHC calls a “join point” because
itis a single (albeit parameterised) piece of code thatritesswhat

to do in both thel andB branches of thease. Here we assume that

g is large enough that GHC does not inline a copy at each call sit

Looking at £, the only call pattern forf has argumentsc, p].
However, if we specialiseg, we would get call patterns farwith
argumentsC, True] and [C, False], which is much better. There
are two reasons thaf is not specialised: first, it is non-recursive;
and second, even if we were to specialise non-recursiveituns;

g does not scrutinise its argumemnt

We do not yet have a good heuristic for specialishgilthough

the situation may look contrived, it is not uncommon in pieet
GHC generates many local join points as a result of the drucia
case-swapping transformation, described in detail in ¢teybnes
and Santos (1998).

7.

Automatic function specialisation is a well-known idea.vtwer,
specialising recursive functions based on staticallywkmanfor-
mation is largely the domain of the partial evaluation comityu
(Jones et al. 1993). Early partial evaluators would onlyciise a
function if one of its arguments was completely static (keown
to the compiler), but later work generalised thisp@rtially-static
values(Mogensen 1988). Even then, the “partially-static” natfre
the structure usually appears to mean that part of the steié$
completely known and part is unknown, whereas our focus is on
structures whosshapeis known. The partial-evaluation work that
seems closest to ours is Bechet’s Limix partial evaluatac{izt
1994). In particular, he handles sum types as well as predaod
he identifies the reboxing problem (Section 6.1). Indeedjéwel-
ops an analysis designed to identify functions where refmpis
not a problem.

Related work

Although there are some similarities, partial evaluati@s louite

a different flavour than the work described here. BpecConstr
transformation has modest goals and modest cost, whereg pa
evaluation is a whole rich research area in its own right. éine-
less,SpecConstr can certainly be regarded as a rather specialised
partial evaluator.

Much more closely related is the work of Thiemann (1994) asd i
precursor (Thiemann 1993). Thiemann’s goal is precisedystme
as ours, although his context is that of a strict languageprsents

a relatively sophisticated abstract interpretation tedatne both
argument usage and call patterns. Our work is less teclyical
complex, but perhaps more practical, Thiemann’s paperriede
to a full-scale implementation.
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8. Conclusion

TheSpecConstr transformation is simple to describe, economical

to implement, and devastatingly effective for certain pemgs. We

are not ready to declare that it should be applied to evergraro,
because it causes an increase in code size of 3-4%, even when
it does not improve performance and, on occasion, can deerea
performance. Nevertheless, an average runtime improveien
10%, against the baseline of an already well-optimised demp

is an excellent result. We have also identified avenues fbhdu

work that may improve it further.

Furthermore, and perhaps most important, we have advaheed t
enterprise of domain-specific optimisation technologye Ttea

is this: that ordinary programmers (i.e. not compiler wnse
should be able to build libraries that, through the medium of
programmer-specified rewrite rules, effectively extend tom-
piler with domain-specific knowledge (Peyton Jones et al120
The streams library is an example of just such a library, and
SpecConstr eliminates a road-block on its usefulness.
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