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Abstract

User-defined data types, pattern-matching, and recursion are ubiq-
uitous features of Haskell programs. Sometimes a function is called
with arguments that are statically known to be in constructor form,
so that the work of pattern-matching is wasted. Even worse, the
argument is sometimes freshly-allocated, only to be immediately
decomposed by the function.

In this paper we describe a simple, modular transformation that spe-
cialises recursive functions according to their argument “shapes”.
We describe our implementation of this transformation in the Glas-
gow Haskell Compiler, and give measurements that demonstrate
substantial performance improvements: a worthwhile 10% onaver-
age, with a factor of 10 in particular cases.

Categories and Subject Descriptors D.1.0 [Programming tech-
niques]: Functional programming; D.3.3 [Programming lan-
guages]: Processors

General Terms Algorithms, Languages, Performance.

Keywords Haskell, compilers, optimisation, specialisation.

1. Introduction

Consider the following Haskell function definition:

last :: [a] -> a
last [] = error "last"
last (x : []) = x
last (x : xs) = last xs

The final equation is the heavily-used path. Annoyingly, though,
this equation first establishes thatxs is a cons, in order to exclude
the second equation — and then callslast recursively onxs. The
first thinglast will do is to analysexs to see whether it is a cons
or nil, even though that fact is already known.

A programmer who worries about this might rewritelast as fol-
lows, so that there is no redundant pattern-matching:

last [] = error "last"
last (x:xs) = last’ x xs

where
last’ x [] = x
last’ x (y:ys) = last’ y ys
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Here last’ is a specialised version of the originallast, spe-
cialised for the case when the argument is a cons. The idea of
specialising a function for particular argument “shapes” is a very
general one, and is the subject of this paper. In particular,our con-
tributions are these:

• We describe a simple, general program transformation that spe-
cialises functions based on the “shapes” of their arguments, or
call patterns (Section 3). Since these shapes are constructor
trees, we call it theSpecConstr transformation.

• The basic idea is simple enough, and easy to prove correct.
However, to be effective, it must specialise the right func-
tions in the right way, something that is governed by a set of
heuristics (Section 3.3). In the light of our experience of using
SpecConstr in practice, we have developed a series of non-
obvious refinements to the basic heuristics (Section 4).

• We have implementedSpecConstr in GHC, a state-of-the art
optimising compiler for Haskell. The implementation is very
modular, consisting simply of a Core-to-Core transformation,
and does not interact with any other part of the compiler.
(“Core” is GHC’s main intermediate language.)

• We give measurements of the effectiveness ofSpecConstr,
both for the full nofib suite, and for a few kernel array-
fusion benchmarks (Section 5). The results are encouraging:
thenofib suite shows a 10% improvement in run time, and the
array-fusion benchmarks run twice as fast or (sometimes much)
better.

Good compilers have a lot of bullets in their gun; each particular
bullet may only be really effective on a few targets, but few pro-
grams evade all the bullets.SpecConstr is an excellent bullet. It
is cheap to implement (less than 500 lines of code in a compiler
of 100,000 lines), and the programs that it hits are well and truly
knocked for six.

2. Motivation

We begin by giving some further examples that motivate the need
for call-pattern specialisation of recursive functions.

2.1 Avoiding allocation

Thelast example shows that specialising a recursive function can
avoid redundantpattern matching, but it can also avoid redundant
allocation. Consider this standard function:

drop :: Int -> [a] -> [a]
drop 0 xs = xs
drop n [] = []
drop n (x:xs) = drop (n-1) xs
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GHC translates Haskell into a small intermediate language called
Core, which is what the optimiser works on. Here is the translation
of drop into Core1, after a bit of inlining:

drop = \n. \xs.
case n of {

I# un ->

case un of {
0 -> xs ;
_ ->

case xs of {
[] -> [] ;
(y:ys) -> drop (I# (un -# 1)) ys

}}}

The firstcase takes apartn, which has typeInt. In GHC theInt
type is not primitive; it is declared like this:

data Int = I# Int#

This is an ordinary algebraic data type declaration, sayingthatInt
has a single constructorI#, which has a single field of typeInt#
(Peyton Jones and Launchbury 1991). The “#” has a mnemonic
significance only; the constructorI# is just an ordinary constructor
with a funny-looking name. The typeInt# is a truly primitive type,
however, built into GHC; it is the type of 32-bit finite-precision
integer values. So the secondcase expression does a perfectly
ordinary pattern-match onn to bind un (short for “unboxedn”),
of typeInt# to the value ofn. Haskell is a lazy language, son may
be a thunk in which case thecase expression will evaluate it.

The secondcase expression tests whether or notun is zero, while
the third scrutinisesxs to see whether or not it is of form(y:ys);
if so, there is a recursive call todrop, passing(n-1) as argument.
This argument (which must have typeInt) is built by decrementing
un, using the built-in operator-# :: Int# -> Int# -> Int#,
and constructing anInt value using the data constructorI#.

Notice that in every iteration except the last,the newly-constructed
Int is immediately de-constructed in the recursive call. In short,
there is a redundant heap allocation of theInt value in every
iteration, leading to increased memory traffic and garbage-collector
load. Especially for tight loops, eliminating allocation is highly
desirable.

In the case ofdrop, we want to specialise the function for the
case when the first argument has shape(I# <something>). The
specialised function looks like this:

drop’ :: Int# -> [a] -> [a]
drop’ = \un.\xs. case un of {

0 -> xs ;
_ ->

case xs of {
[] -> [] ;
(y:ys) -> drop’ (un -# 1) ys }}

Now there is no allocation in the loop — and removing allocation
from the inner loop of a program can be a very big win indeed.

2.2 Stream fusion

These examples are suggestive, but our recent interest in
SpecConstr was provoked by the work on stream fusion by Coutts
et al. (2007a,b). Their goal is to eliminate intermediate data struc-
tures, such as lists or arrays. For example, consider the following
function:

1 NB: this display omits all type information, which Core includes.

sum_append :: [Int] -> [Int] -> Int
sum_append xs ys = sum (xs ++ ys)

We would like to compute the result without constructing theinter-
mediate listxs++ys. The details of their work can be found else-
where in this proceedings, but the key point is this: a fold operation
(sum in this case) is performed by astreamfold, looking something
like this:

data Stream a
= forall s. Stream (s -> Step a s) s

data Step a s = Done | Yield a s

sumStream :: Stream Int -> Int
{-# INLINE sumStream #-}
sumStream (Stream next s)

= go 0 s
where
go z s = case (next s) of

Done -> z
Yield x s’ -> go (z+x) s’

The intention is thatsumStream will be inlined at its call sites,
which will instantiate its body with a (perhaps rather complicated)
function next and a (perhaps also complicated) initial states,
thereby producing a specialised, but still recursive, version of go.

In the case ofsum_append, here it is the code that arises after
inlining sum and (++), and simplifying a little (this example is
taken from Coutts et al. (2007a)):

sum_append xs ys
= go 0 (Left xs)
where

go z (Left xs)
= case xs of

[] -> go z (Right ys)
x : xs’ -> go (z+x) (Left xs’)

go z (Right ys)
= case ys of

[] -> z
y : ys’ -> go (z+y) (Right ys’)

Notice the recursive calls togo with explicit Left and Right
constructors, and the pattern matching on that same parameter. If
we specialisedgo for these two cases we would get this:

sum_append xs ys
= go_left 0 xs
where

go_left z xs = case xs of
[] -> go_right z ys
x : xs’ -> go_left (z+x) xs’

go_right z ys = case ys of
[] -> z
y : ys’ -> go_right (z+y) ys’

Now the program stands revealed:go_left adds the elements
of xs into an accumulating parameter, and then switches to
go_right, which does the same forys. Stream fusion entwines
these two loops together into one, driven by a state that distin-
guishes them.SpecConstr unravels the loop nest, improving per-
formance by avoiding the allocation ofLeft andRight construc-
tors. Indeed, withoutSpecConstr the performance is no better
than the original list-ful program.

(The alert reader may notice that the good performance of
sum_append relies on the strictness analyser spotting thatgo_left
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Figure 1: GHC compilation pipeline

and go_right are strict inz, else the accumulating parameter
will build up a chain of thunks. That is indeed true, but it isalso
true of the originalsumStream function. Furthermore, we run the
strictness analyserbeforeSpecConstr, so the latter transforms the
program only after strictness analysis has already done itswork.
Hence, one does not need to worry thatSpecConstr might obfus-
cate the program, thereby defeating strictness analysis.)

3. ImplementingSpecConstr

It is easy enough to write down the desired result of the transforma-
tion, but we also need a general algorithm that implements it. In this
case, we can leverage GHC’s existing infrastructure to makethe al-
gorithm rather simple. Before discussing theSpecConstr imple-
mentation, we therefore digress briefly to describe this infrastruc-
ture.

GHC’s compilation pipeline looks like Figure 1. The program
is parsed, renamed, typechecked, and desugared into the Core
language. Core is a small, explicitly-typed lambda-calculus lan-
guage in the style of System F. The Core program is processed
by a succession of Core-to-Core optimisations, one of whichis
SpecConstr, after which it is fed to the code generator.

A particularly important Core-to-Core pass is theSimplifier, which
implements a large set of simple, local optimising transformations,

such as constant folding, beta reduction, inlining, and so on (Pey-
ton Jones and Santos 1998). A common pattern is that a sophis-
ticated optimisation, such as strictness analysis orSpecConstr,
does the heavy lifting, but produces a result program that islittered
with local inefficiencies, of precisely the sort that the Simplifer can
clean up. The assumption that the Simplifier will run later makes
each optimisation much simpler to implement.

Returning now toSpecConstr, the implementation proceeds in
three steps:

Step 1: Identify the call patternsfor which we want to specialise
the function.

Step 2: Specialise: create a specialised version of the function for
each distinct call pattern.

Step 3: Propagate:replace calls to the original function with calls
to the appropriate specialised version.

A call patternfor a particular function is a pair

v ⊲ p

wherev is a list of variables, which we call thepattern variables,
andp is a list of argument expressions. In the case ofdrop, the
recursive call(drop (I# (un -# 1)) ys) gives rise to the call
pattern

[v, ys] ⊲ [I# v, ys]

A call pattern describes the argument templates for which wewant
to generate a specialised variant of the function. In the case ofdrop,
the call pattern specifies a specialised variant for calls ofthe form

drop (I# 〈something〉) 〈something else〉

The pattern variablesv, ys stand for the “〈something〉” holes in
this template. The order of pattern variablesvs in a call pattern
is unimportant, and a call pattern is insensitive to consistent α-
renaming of its pattern variables.

In the case ofdrop, the number of pattern variables happens to be
the same as the number of arguments, but that is not in generalthe
case. To illustrate, here are some further examples of call patterns:

[x] ⊲ [True, x] First argument isTrue, second is anything
[x, xs] ⊲ [(x:xs)] Sole argument is a cons (:)

We now give the details of Steps 1-3 identified above, in orderof
increasing difficulty, starting with Step 3.

3.1 Step 3: Propagation

The third step of the algorithm, propagation, replaces calls to the
original function with calls to a specialised version of thefunction,
whenever such a version has been created by the earlier steps. The
propagation step is particularly easy to implement. The Simplifier
already provides a general mechanism calledextensible rewrite
rules, that allows an optimisation pass (or indeed the programmer)
to create a rewrite rule that is subsequently applied by the Simplifier
as it traverses the program (Peyton Jones et al. 2001). Knowing that
the Simplifier will run subsequently, all Step (3) need do is create
one rewrite rule for each call pattern. For example, in the case of
drop, from the call pattern[v, ys] ⊲ [I# v, ys] Step (3) adds the
rule:

{-# RULES
"drop-spec" forall v xs.

drop (I# v) xs = drop’ v xs
#-}
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(More precisely, this is the concrete syntax that a programmer
would use to express a rewrite rule, but Step (3) directly creates
the rule in its internal form.) The effect of this rule is thatwhenever
the Simplifier sees a call matching the left-hand side of the rule,
it replaces the call with the right-hand side. The rule applies when
compiling the moduleData.List wheredrop is defined, but it
also survives across separate compilation boundaries, so that any
module that importsData.List will also exploit the rule.

Given a functionf , a call pattern[v1, . . . , vn] ⊲ [p1, . . . , pm], and
the corresponding specialised functionf ′, the rule is trivial to
generate:

forall v1 . . . vn. f p1 . . . pm = f ′ v1 . . . vn

Incidentally, since Core is an explicitly-typed, polymorphic lan-
guage, the pattern variablesvs may, and often do, include type vari-
ables. For example, in its internal form the explicitly-typed rule for
drop looks like this:

forall (a :∗) (v :Int#) (xs :[a]).
drop a (I# v) xs = drop’ a v xs

The existing rewrite-rule mechanism therefore completelytakes
care of propagation.

3.2 Step 2: Specialisation

The Specialise step looks rather harder, because specialisation can
have a radical effect. Whole chunks of code can disappear. For
example, there is one fewercase expression indrop’ compared
with drop, and the allocation has disappeared; and in thelast
example, the call toerror does not appear inlast’ at all. For-
tunately, the Simplifier makes it easy. Given a function definition
f = λx1 . . . xm.e, and call patternvs ⊲ ps for f , we can construct
the specialised versionf ′ thus:

f ′ = λv1 . . . λvn. e[p1/x1, . . . , pm/xm]

where the notatione[p/x] means the result of substitutingp for x
in e. In our now-familiardrop example, with call pattern[v, ys] ⊲
[I# v, ys], we get

drop’ = \v.\ys. <body>[I# v/n, ys/xs]

where<body> is the Core code given near the start of Section 2.1.
Of course, this code isbigger than the original definition, since we
are substituting termspi for variablesvi. But the whole point is
that we do this precisely when (we believe that) the Simplifier will
subsequently be able to simplify the substituted body.

In the case ofdrop, for example,(case n of ...) in the original
drop becomes(case (I# v) of ...) in the substituted body,
so the case expression can be eliminated, leaving

drop’ :: Int# -> [a] -> [a]
drop’ = \v.\xs. case v of {

0 -> xs ;
_ ->

case xs of {
[] -> [] ;
(y:ys) -> drop (I# (v -# 1)) ys }}

At this stagedrop’ callsdrop. However, the Simplifier can apply
the rewrite rule"drop-spec" that we constructed in Step (3), and
that “ties the knot” to give the self-recursive code fordrop’ given
at the end of Section 2.1.

In short, Step (2) is extremely simple: just make a fresh copyof the
right-hand side of the function, instantiated with the callpatterns.
The Simplifier will do the rest.

3.3 Step 1: Identifying call patterns

Now we turn to the first step, that of identifying the call patterns
for which we want to specialise each function. Here is the setof
heuristics that we used initially: we treat a call(f e1 . . . en) as a
specialisable call if all of the following conditions hold:

H1 The functionf is bound by a definition of the form

f = λx1 . . . xa.e (a > 0)

That is, the lambdas are explicit, and the function has aritya.

H2 The right hand sidee is “sufficiently small”. In our implemen-
tation this size threshold is controlled by a flag.

H3 The functionf is recursive, and the specialisable call appears
in its right-hand side.

H4 All f ’s arguments are supplied in the call; that isn ≥ a.

H5 At least one of the argumentsei is a constructor application.

H6 That argument iscase-analysed somewhere in the body off .

We can only specialise functions whose definitions are statically
visible (H1). For example, iff is lambda-bound, then even if we
find a call in whichf is applied to structured arguments, we cannot
specialisef ’s definition. The further requirement thatf ’s definition
has explicit lambdas allows us to establish whether or not (H4-6)
hold. For example, the definition

f = head ys

is not specialisable.

We specialise onlyrecursivefunctions (H3), because they represent
loops. A non-recursive function is often specialised by inlining. A
large function will not be inlined, however, so it might be worth
considering specialising non-recursive functions calledfrom within
loops; but we have not yet done so.

For such recursive functions, we specialise only calls found in the
body of the function itself (H3 again). Calls from outside the func-
tion start the loop; calls in the body are part of the loop. Moreover,
to keep things simple we require that the call is saturated; that is,
if the function definition looks likef = λx1 . . . xa.e then the call
has at leasta arguments (H4).

The essence of call-pattern specialisation is that one or more argu-
ments of the call is a constructor application (H5). However, there
is no point in specialising the function for a call pattern unless the
specialised version can take advantage of the knowledge about the
argument’s shape, and that is what (H6) is about. Take a unaryfunc-
tion f = λx.e, for example. The body of the specialised function
is e[p/x], wheree is the body of the original function, andp is a
constructor application. This is only going to be an improvement if
some, or preferably all, of the occurrences ofx in e are the scru-
tinee of acase expression, because then thecase expression can
be eliminated, and the constructor application need never be con-
structed. For example consider:

f x y = (case x of { Just v -> v; Nothing -> 0 })
: (f (Just y) (y+1))

For (H5) we note that the recursive call has the constructor ap-
plication (Just y) as its argument; while for (H6) we note that
f decomposes its first argument with acase expression. Notice,
however, that the deconstruction ofx need not lexically enclose the
recursive call; indeed it need not be certain to be evaluatedat all.
Specialisation still eliminates thecase, regardless. In our current
example we get (after some simplification):
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{-# RULE "fs1" forall y w. f (Just y) w = f’ y w #-}
f’ v y = v : f’ y (y+1)

The call-pattern-identification algorithm (Step 1) therefore works
in two phases, as follows:

Step 1.1: It traverses the program, gathering two sorts of informa-
tion:

(a) Call instances; that is, the function together with its actual
arguments (i.e. not yet turned into callpatterns).

(b) Argument usage; that is, information about which argu-
ments are scrutinised bycase expressions.

Step 1.2:At the definition site for a functionf it combines (a)
the call-instance information forf with (b) the argument-usage
information that describes howf uses its arguments, to make
thecall patternsfor whichf will be specialised.

For example, consider a recursive functionf = λx1x2.e. Suppose
that ine we find a call(f (Just v) (p, q)), where both arguments
are constructor applications. Suppose further that the argument-
usage information frome indicates that onlyx1 is scrutinised by
a case expression. Then it would be fruitless to specialise onx2,
so we generate the call pattern[v, w] ⊲ [Just v, w], wherew is a
fresh pattern variable.

Pattern variables are also used in call patterns in place of parts of
the call that do not take the form of constructor applications. For
example, consider the call(f (Just x) (g x)). It would be perfectly
correct to specialisef for the call pattern

[g, x] ⊲ [Just x, g x]

But it would be foolish to do so, because the specialised version of
f cannot usefully exploit the knowledge that its second argument
is a function application. Instead, when turning a call instance into
a call pattern, GHC abstracts each sub-expression of the call that is
not a constructor application by a pattern variable. In our example,
the derived call pattern would be[x, w] ⊲ [Just x, w].

Lastly, in step 1.2, GHC eliminates duplicate call patterns, modulo
α-conversion of course, since nothing is gained by making two
identical specialisations of the same function.

3.4 Summary

This concludes the overview of theSpecConstr transformation.
The transformation is implemented in GHC, which is itself written
in Haskell. As a way to make the earlier discussion more concrete,
here is the type signature of the mainSpecConstr function in
GHC’s implementation:

specExpr :: ScEnv -> CoreExpr
-> (ScUsage, CoreExpr)

data ScEnv
= SCE { sc_size :: Int,

sc_how_bound :: Map Id HowBound }

data HowBound = SpecFun | SpecArg

type ScUsage = (Calls, ArgUsage)

type Calls = Map Id [Call]
type Call = [CoreExpr]

type ArgUsage = Set Id

The functionspecExpr takes aCoreExpr and an environment that
gives information about the context of the expression. It returns
a transformed expression, along with usage information (oftype
ScUsage) that describes how the expression uses its free variables.

The environmentScEnv has two fields:

• sc_size, the (fixed) size threshold for specialisation (H2).

• sc_how_bound, a finite mapping that identifies specialisable
functions (SpecFun), and their arguments (SpecArg). This
mapping is extended in the obvious way when the transforma-
tion moves inside the body of a specialisable function (H1).Id
is GHC’s data type for identifiers.

The usage information,ScUsage has two components: call in-
stances (Calls) and argument usage (ArgUsage). The former is
simply a finite mapping from a specialisable function (aSpecFun)
to a list of its calls, each represented by a list of arguments. The
latter is a set of the identifiers (identified asSpecArgs) that are
scrutinised by acase expression.

4. Refining the basic scheme

The alert reader will have noticed thatthe particular choice of
call patterns does not affect correctness. We can specialise for too
many call patterns (so that the specialisations go unused) or too few
(so that worthwhile optimisation opportunities are missed), but in
either case the program will still run correctly. Our goal isto select
call patterns for which useful optimisation opportunitieswill arise.

So only Steps 2 and 3 affect correctness, and it is easy to prove
that they are in fact correct. Step 2 simply adds a new function
definition, which has no effect on the meaning of the program,so
the only question is whether the rewrite rule created in Step3 is
correct. For a functionf = λx1 . . . xm.e, and call patternv ⊲p, the
rule looks like:

forall v1 . . . vn. f p1 . . . pm = f ′ v1 . . . vn

Does the equality claimed by the rule hold? The left-hand side of
the rule is, byβ-reduction, equal toe[p/x]. The definition off ′ is
f ′ = λv1 . . . vm.e[p/x], so the right-hand side of the rule is also
equal toe[p/x], and we are done.

Matters are much less cut-and-dried when it comes to identifying
call patterns (Step 1). We have spent considerable time tuning
the choice of call patterns in the light of experience, and these
refinements are the subject of the rest of this section. Remember:
they are all optional!

4.1 Variables that have known structure

Consider this function:

f1 n x = ...(case x of (p,q) -> f1 p y)...
where
y = (n,True)

Although the argument(n,True) does not appearliterally in the
call, it is obvious that we would like to record a call pattern[p, n] ⊲
[p, (n,True)], in which the second argument off is a pair whose
second component isTrue.

A very similar situation arises when the recursive call occurs in a
branch of acase expression, thus:

f2 n x = case x of { (p,q) -> ...(f2 m x)... }
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Again, although the second argument of the recursive call isnot
literally a constructor application,x is known to be a pair(p,q) at
the moment of the call. So it is desirable to record the call pattern
[m, p, q] ⊲ [m, (p,q)].

A third situation is a call like this:

. . . f3 (let x = h y in (x,x)) . . .

Again,f3 is not literally applied to a pair, but despite the interven-
ing let it is clear thatf3 could usefully be specialised for the call
pattern[p, q] ⊲ (p,q).

Incidentally, the reader might wonder why the Simplifier does not
instead eliminate thelet in the first place. It cannot substitute
(h y) for x, because that would duplicate the call ofh. Alterna-
tively, it could float thelet outwards, to give this:

. . . let x = h y in f3 (x,x) . . .

Indeed it will do so iff3 is strict, but not otherwise, because if
f3 is lazy the transformed program risks allocates two objects(the
thunk for(h y) and the pair(x,x)) instead of one (the thunk for
let x = h y in (x,x)).

To summarise, here is the refinement:

R1: when collecting call patterns,SpecConstr should take ac-
count of

• Variables that arelet-bound to a constructor application
(example:f1).

• Variables that have beencase-analysed by an enclosing
case expression (example:f2).

• Arguments that are constructor applications disguised by
enclosinglets (example:f3).

Exactly the same three refinements must also be made to the Sim-
plifier’s rule matcher. For example, the call pattern forf2 will gen-
erate a rewrite rule looking like this:

{-# RULES
"f2-spec" forall m p q. f2 m (p,q) = f2’ m p q

#-}

The rule matcher embodied in the Simplifier must spot that thecall
in the right hand side off2 matches this rule. Similarly, the rule
matcher should spot that the call

f2 m (let x = h y in (x,x))

is also an instance of rulef2-spec, and rewrite it to

let x = h y in f2’ m x x

Notice that these refinements to the rule matcher are useful for all
rules, not only for those generated bySpecConstr.

A reader who is familiar with Haskell may also notice thatf2 is
strict inx, and so GHC’s strictness analyser will makef2 use call-
by-value and, furthermore, will pass two components of the pair
separately to the function, thereby achieving the same effect as call-
pattern specialisation. But theSpecConstr transformation deals
with two cases that leave the strictness analyser helpless.First, the
function may not be strict:

f4 True n x = n
f4 False n x = case x of

(p,q) -> ...(f4 c m x)...

Second, the argument may not be of a single-constructor type:

data Maybe a = Nothing | Just a

f5 :: Int -> Maybe Int -> Int
f5 n x = case x of

Nothing -> n
Just p -> ...(f5 m x)...

Although f5 is strict, GHC will still pass the argumentx boxed.
However, theSpecConstr transformation can spot that, at the
recursive call,x is always of form(Just p), and can make a
specialised version off5 that passesp alone, eliminating thecase
expression altogether.

In concrete terms, theSpecConstr data structures sketched in
Section 3.4 are modified as follows:

• The environmentScEnv is augmented with a field that describes
the shape of any known variables:

data ScEnv = SCE { ...; sc_cons :: ShapeMap }

type ShapeMap = Map Id (DataCon,[CoreExpr])

That is,ScEnv is extended with new fieldsc_cons of type
ShapeMap, which maps an identifier to its shape (if known).
The typeDataCon is GHC’s data type representing a data
constructor.

• The call-instance information must be augmented to capturethe
ShapeMap at the call site:

data Call = Call ShapeMap [CoreExpr]

For example, inf5 above, theShapeMap would be augmented in
theJust branch of thecase with the mapping[x 7→ Just p]. The
Call record collected from the body off5, will look like

Call [x 7→ Just p] [m, x]

4.2 Nested structure

Consider this function:

f x = ... (f (Just (x:xs))) ...

Here, the argument tof is a nestedconstructor application. It
is obviously attractive to specialise for the nested call pattern
[x, xs] ⊲ [Just (x:xs)]. However, this apparently-simple refine-
ment complicates (H6): we only want to specialisef for the nested
call pattern iff not onlycase-analysesx, but alsocase-analyses
the argument of theJust.

In general, then, we must record all the evaluation thatf performs
on its arguments, anywhere in its body. Here is a more complicated
example:

data T = A (Either Bool Bool) | B (Int,Int)
data Either a b = Left a | Right b

g :: T -> Int
g (A (Left p)) = ...
g (A (Right True)) = ...
g (A (Right False)) = ...
g (B x) = ...

Here are some call patterns forg, along with whether we would like
to specialiseg for that pattern:

[p] ⊲ A (Right p) Yes
[] ⊲ A (Right True) Yes
[] ⊲ A (Left True) No: g does not decompose theBool

[x] ⊲ B x Yes
[x, y] ⊲ B (x, y) No: g does not decompose the pair
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So we must extract usage information fromg’s body that says:

• g’s argument is case-analysed

• If it is of form A x, thenx is case-analysed:

If x has form(Left p) thenp is not analysed further.

If x has form(Right q) thenq is case-analysed.

• If it is of form B x, thenx is not further analysed.

In this example, all the pattern matching is done at the “top”of
g, but that need not be the case; we have seen earlier examples in
which thecase expressions are nested inside the function, and/or
passed as arguments to other function calls in the body.

R2: when collecting argument-usage information,SpecConstr
should recordnestedpattern matches within the expression.

In concrete terms, rather than simply accumulating aset of the
variables that are case-analysed,SpecConstr must accumulate,
for each variable, evaluation information about each possible data
constructor to which that variable might evaluate. This is acase
where writing the code is easier than describing it informally:

type ArgUsage = Map Id ArgOcc

data ArgOcc = ArgOcc (Map DataCon [Maybe ArgOcc])

For each variablex we accumulate a finite map that gives informa-
tion of x’s occurrences. Ifx is in the domain of theArgUsage map,
thenx is scrutinised; otherwise it is not. If itis in the ArgUsage
map, itsArgOcc is a finite map that summarises, for each data con-
structor inx’s type, how the pattern-bound arguments of that data
constructor are used, usingNothing to indicate that the argument
is not scrutinised. In our exampleg above, theArgOcc for g’s ar-
gument would look like this2:

2

6

6

4

A 7→

2

4

Left 7→ [ Nothing ]

Right 7→

»

True 7→ [ ]
False 7→ [ ]

–

3

5

B 7→ [ Nothing ]

3

7

7

5

It is easy to define functions that take the union of twoArgOcc
values, so that theArgUsage from different sub-expressions can be
merged as we move back up the tree.

4.3 Specialisation fixpoints

Consider this recursive function:

f :: Either Int Int -> (Int,Int) -> Int
f (Left n) (p,q) = f (Right n) (q,p)
f (Right n) x = if n==0 then fst x

else f (Left (n-1)) x

The function is somewhat contrived, in the interests of brevity,
and we have again taken the liberty of using pattern-matching
definitions instead of thecase expressions that GHC really uses.
From the right hand side off we get two call patterns:

[n, p, q] ⊲ [Right n, (q, p)]
[m, x] ⊲ [Left m, x]

Specialisingf for these patterns gives the functions:

-- Specialise f (Right n) (q,p)
f1 n q p = if n==0 then fst (q,p)

else f (Left (n-1)) (q,p)

2 We have left out a couple ofJust constructors to reduce clutter

-- Specialise f (Left n) x
f2 n (p,q) = f (Right n) (q,p)

(We have dropped some dead code here, although in practice that
would not be done until the simplifier runs in Step 3.) A cursory
examination shows that the specialised functionf1 has anewcall
pattern forf, namely[m, p, q]⊲[Left m, (q, p)]. On reflection, it is
unsurprising that specialising a function may give rise to yet-more-
specialised call patterns from its right-hand side. If we specialisef
for this pattern too, we get:

-- Specialise f (Left m) (q,p)
f3 m q p = f (Right m) (p,q)

The call pattern from the right-hand side of this specialisation is
[m, q, p] ⊲ [Right m, (p, q)]; and this one is the same as the call
pattern forf1. So we have reached a fixed point.

After the simplifier runs, and propagates the specialised versions to
their call sites, we get this resulting program:

f (Left n) (p,q) = f1 n q p
f (Right n) x = if n==0 then fst x

else f2 (n-1) x

f1 n q p = if n==0 then fst (q,p)
else f3 (n-1) q p

f2 n (p,q) = f1 n q p

f3 m q p = f1 m p q

There is no construction and deconstruction ofLeft and Right
inside the loop; and once the pair is evaluated for the first time it is
never evaluated again.

The refinement we need is this:

R3: when specialising a function definition, collect new call pat-
terns from its specialised right-hand side.

This refinement is easy to implement: we must simply call
specExpr on each specialised copy of the function. In practice,
instead of a two-pass algorithm — substitute and then specialise
— GHC extendsScEnv with one more field, a substitution. Then
specExpr substitutes and specialises at the same time, which turns
out to be quite convenient.

Is there any guarantee that this iterative process will reach a fixed
point? Yes, there is. Remember that we never specialise a function
for call patterns that are “deeper” than theArgUsage information,
and this information is invariant across all the specialisations.

4.4 Mutual recursion and non-recursive functions

So far we have only consideredself-recursive functions (H3). But
mutual recursion is quite common, and gives rise to no real diffi-
culty. Consider a recursive group

rec { f1=e1; . . . ; . . . fn=en }

We simply look for call instances forf1, not only in e1 but also
in e2 . . . en. Then we derive call patterns from those calls, and
specialisef1 for those call patterns, just as before.

R4: when gathering call instances for a recursive functionf , look
in all definitions of theletrec in whichf is defined.

This optimisation turned out to be important in practice, because
GHC sometimes splits a self-recursive function into two mutually-
recursive parts. Here is an example:

333



foo :: Maybe Int -> Int
foo Nothing = 0
foo (Just 0) = foo Nothing
foo (Just n) = foo (Just (n-1))

This does not look mutually recursive, but GHC lifts the constant
sub-expression(foo Nothing) out of the loop (Peyton Jones et al.
1996), to give this mutually-recursive pair:

lvl = foo Nothing
foo Nothing = 0
foo (Just 0) = lvl
foo (Just n) = foo (Just (n-1))

In this case, nothing is gained by this transformation, since
(foo Nothing) is evaluated only once in the loop, but GHC is
not clever enough to spot this.

5. Results

We implementedSpecConstr, including all the refinements de-
scribed above, in the Glasgow Haskell Compiler (as at March
2007). Our implementation comprises some 475 lines of Haskell.
It is a straightforward Core-to-Core pass, which readily slots into
GHC’s compilation pipeline.

We measured its effectiveness in two ways. First, we ran the en-
tire nofib benchmark suite with theSpecConstr transformation
switched off, and then again with it switched on. All other opti-
misations were enabled (-O2). The results are shown in Figure 2.
The minimum, maximum and geometric means are taken over all
91 programs in the suite, but the table only shows programs whose
allocation changed by more than 2% or whose runtime changed by
more than 5%. We place little credence in small changes in runtime,
because they are hard to reproduce, whereas the allocation figures
are repeatable. A runtime change of “-” therefore means thatthe
runtime was too short to report a meaningful change. We compiled
the entire set of Haskell libraries in the same way as the benchmark
program itself (i.e. with or without runningSpecConstr, respec-
tively).

These figures show a consistent increase in binary size of a few
percent, which is not surprising since we are duplicating code.
Some programs, such asqueens and mandel2 show a dramatic
decrease in allocation. Most others show much smaller changes
(remember that many are suppressed altogether from the figure),
but alas a handful show a noticeable increase. We investigated one
of these,fibheaps in detail, and found that the increase was due to
reboxing, which we discuss in Section 6.1. Nevertheless, run time
almost invariably decreases, with a geometric mean of 10%.

The second way in which we evaluatedSpecConstr was by apply-
ing it to some small array-fusion examples, taken from work in the
Data Parallel Haskell project (Chakravarty et al. 2007). Wetook a
set of five example pipelines of array operations that shouldfuse to
make a single loop, and tried them with and withoutSpecConstr.
The results are dramatic, and are shown in Figure 3. Performance
is at least doubled, and in one case is multiplied by 10. Here is one
of the pipelines:

pipe1 :: UArr Int -> UArr Int -> UArr Int
pipe1 xs ys = mapU (+1) (xs +:+ ys)

It could hardly by simpler: add the two arraysxs andys element-
wise, and then increment each element of the resulting array. For
good performance it is essential that we eliminate the intermediate
array. A UArr Int is an array of unboxed integers, so the fused
loop will run along xs and ys adding corresponding elements,
incrementing the result, and writing it into the result array. In

Program Binary size Allocation Run time
% increase % increase % increase

anna +5.5% +0.5% -9.0%
ansi +3.2% -10.1% -26.4%

atom +3.1% -0.1% -12.8%
bernouilli +3.3% -2.0% -15.1%

boyer +3.2% +0.0% -16.4%
boyer2 +3.2% +3.7% -

calendar +3.2% +0.6% -17.9%
cichelli +3.3% -2.2% -2.6%
circsim +3.0% -0.7% -5.1%
clausify +4.7% -6.8% -5.5%

comp lab zift +3.8% +0.2% -16.4%
compress +3.3% +0.0% -19.0%

compress2 +8.7% -2.2% -13.7%
constraints +3.1% -0.6% -5.8%

exp3 8 +3.1% +0.0% -18.6%
fft +2.9% -1.5% -5.2%

fibheaps +2.8% +2.0% -2.5%
fulsom +2.8% -0.3% -10.8%
gamteb +2.9% -8.9% -

gcd +3.3% -10.6% -10.2%
gen regexps +3.2% +0.0% -6.4%

genfft +3.0% -0.5% -17.0%
gg +3.4% +11.0% -
ida +3.5% -0.5% -27.9%

integer +3.2% -2.3% -11.2%
knights +3.2% +0.0% -8.5%

lcss +3.3% -0.0% -9.2%
life +3.2% +0.0% -14.3%
lift +3.3% +2.7% 0.00

listcompr +3.0% +0.1% -20.4%
listcopy +3.0% +0.2% -22.1%

mandel2 +3.5% -67.3% -
multiplier +3.2% +0.0% -12.6%

parstof +2.8% -2.3% 0.01
pic +3.0% -5.6% 0.01

power +3.6% -4.6% -25.0%
primes +3.1% +0.0% -8.7%

primetest +3.7% -4.8% -0.4%
puzzle +3.2% +0.0% -11.2%
queens +3.1% -79.5% -38.5%
rewrite +3.4% -0.0% -6.1%

rsa +3.8% -8.5% -
scs +3.0% -3.6% -9.7%

simple +2.9% -0.0% -10.5%
solid +2.8% +0.4% -7.2%

sphere +3.0% -2.0% -8.9%
symalg +5.2% -2.9% 0.02

transform +3.8% +0.3% -13.0%
typecheck +2.9% +0.4% -6.2%

wang +3.0% +0.3% -20.3%
wheel-sieve2 +3.1% +0.0% -9.5%

...and another 40 programs...

Min +2.8% -79.5% -38.5%
Max +8.7% +11.0% +3.7%

Geometric Mean +3.4% -3.7% -10.5%

Figure 2: Effects of SpecConstr on nofib programs
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Runtime (ms) Runtime
Program without with % increase

pipe1 506 205 -60%
pipe2 159 77 -51%
pipe3 284 114 -60%
pipe4 545 70 -87%
pipe5 6,761 720 -89%

Figure 3: Effects of SpecConstr on array-fusion pipelines

the fused loop, the increment is practically free, but thereis a
tremendous loss of performance if instead we allocate and fill
an intermediate array. Array fusion is carried out using thesame
stream paradigm as that described in Section 2.2, but successful
fusion is much more important.

(Indeed that is also the weakness of the fusion approach: failure to
fuse can turn a good program into a bad one, yet that failure might
be due to an obscure and hard-to-predict interaction of optimisation
heuristics. It remains to be seen whether array fusion can bemade
reliable and robust enough that this problem does not show upin
practice, but that is a challenge for another day.)

6. Further work

In Section 4 we described a series of refinements to the basic
scheme. However we have also encountered shortcomings in our
heuristics that are not so easy to fix, and we collect that experience
here.

6.1 Reboxing

So far we have presented the advantages of specialisation. But here
is a function for which matters are more ambiguous:

f :: (Int,Int) -> [Int]
f x = h x : case x of (p,q) -> f (p+1,q)

The recursive call tof is a constructor, and the argumentx is indeed
decomposed inside the function, so our heuristics say we should
specialise it. Here is the specialised function:

f1 :: Int -> Int -> [Int]
f1 p q = h (p,q) : f1 (p+1) q

We see good news:f1 does not allocate the pair(p+1,q) at the
recursive call tof, asf did. But we see countervailing bad news:
f1 allocates the pair(p,q) at the call toh, whichf does not. So,
matters are no worse than before, and we have eliminated thecase,
but they are not as much better as we might have expected.

The problem is that the argumentx is used inf both as a case
scrutinee,and as a regular argument to an unrelated functionh.
Hence, if we pass the argument in its constituted parts,p andq,
we may need to re-box them before passing it toh. We call this
the “reboxing problem”. In the example above, allocation was no
worse, and the code was shorter, so specialisation is probably still
a good idea. Alas, there are other examples where allocationis
increasedby SpecConstr due to reboxing, and so specialisation
would be a Bad Thing — and it is not easy to predict exactly when
the problem will occur. One possibility is to modify (H6) thus:

H6’ Specialise on an argumentx only if x is only scrutinised by a
case, and is not passed to an ordinary function, or returned as
part of the result.

Sadly, this is too conservative. Here is a slightly contrived example:

f :: Maybe Int -> Int -> Int
f x n = case x of

Nothing -> 0
Just m -> if n==0 then f x (n-1)

else m

Herex occurs passed as a regular argument — tof itself! So (H6’)
would disable specialisation on the grounds that we do not want
to risk reboxingx. But if we do specialisef for the first argument
beingJust m, the specialised function will not, in fact, rebox the
argument. A simple-minded analysis risks throwing the babyout
with the bathwater.

Our current implementation ofSpecConstr simply ignores the
reboxing problem. Close inspection reveals that reboxing is the
reason that some programs allocate more heap withSpecConstr
enabled, as we saw in Section 5. We need a more sophisticated
analysis of argument usage, so that we can get (most of) the wins
without risking losses from reboxing.

6.2 Function specialisation

Here is an example that arose in a real program.

the_fun :: [a] -> Step a [a]
the_fun x = ...non-recursive...

getA :: [[a]] -> [a]
getA [] = []
getA (x:xs) = getB the_fun x xs

getB :: ([a] -> Step a [a]) -> [a] -> [[a]] -> [a]
getB f x xs = case (f x) of

Done -> getA xs
Yield y ys -> y : getB f ys xs

Here, the_fun is a non-recursive function, and onlygetA was
called elsewhere in the program. It would obviously be profitable to
specialisegetB for the case when its first argument isthe_fun, so
thatthe_fun could be inlined in the specialised copy. This paper
has focused on specialising functions for particularconstructor
arguments, but here we want instead to specialise on a particular
functionalargument. Doing so is of more than theoretical interest:
the fragment above arose when compiling the expression

concatMap (map (+ 1)) xs

using the stream-fusion techniques of Coutts et al. (2007a).

Specialising for function arguments is more slippery than for con-
structor arguments. In the example above the argument was a sim-
ple variable but what if it was instead a lambda term? Should we
generate a RULE like this?

f (λx. . . .) = e

The trouble is that lambda abstractions are much more fragile than
constructor applications, in the sense that simple transformations
may make two abstractionslook different although they have the
same value. So while we could generate such a rule, there is a good
chance that it will never match anything!

An alternative approach might be to specialise only on function-
valuedvariables, and perhaps also partial applications thereof. In
the example above, that amounts to treatingthe_fun very similarly
to a nullary constructor. We have not yet followed this idea through
to its conclusion, but it looks promising.
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6.3 Join points

Our heuristic (H3) also only consideredrecursivefunctions. How-
ever a recursive function may have anon-recursivefunction defined
inside it. For example:

f x y = let g p = ...(f C p)...
in case x of

A p -> g True
B q -> g False
C -> if y then ... else ...

Here,g is a local, non-recursive function defined inside the recur-
sive functionf. In fact,g is what GHC calls a “join point” because
it is a single (albeit parameterised) piece of code that describes what
to do in both theA andB branches of thecase. Here we assume that
g is large enough that GHC does not inline a copy at each call site.

Looking at f, the only call pattern forf has arguments[C, p].
However, if we specialisedg, we would get call patterns forf with
arguments[C, True] and [C, False], which is much better. There
are two reasons thatg is not specialised: first, it is non-recursive;
and second, even if we were to specialise non-recursive functions,
g does not scrutinise its argumentp.

We do not yet have a good heuristic for specialisingf. Although
the situation may look contrived, it is not uncommon in practice.
GHC generates many local join points as a result of the crucial
case-swapping transformation, described in detail in Peyton Jones
and Santos (1998).

7. Related work

Automatic function specialisation is a well-known idea. However,
specialising recursive functions based on statically-known infor-
mation is largely the domain of the partial evaluation community
(Jones et al. 1993). Early partial evaluators would only specialise a
function if one of its arguments was completely static (i.e.known
to the compiler), but later work generalised this topartially-static
values(Mogensen 1988). Even then, the “partially-static” natureof
the structure usually appears to mean that part of the structure is
completely known and part is unknown, whereas our focus is on
structures whoseshapeis known. The partial-evaluation work that
seems closest to ours is Bechet’s Limix partial evaluator (Bechet
1994). In particular, he handles sum types as well as products, and
he identifies the reboxing problem (Section 6.1). Indeed, hedevel-
ops an analysis designed to identify functions where reboxing is
not a problem.

Although there are some similarities, partial evaluation has quite
a different flavour than the work described here. TheSpecConstr
transformation has modest goals and modest cost, whereas partial
evaluation is a whole rich research area in its own right. Neverthe-
less,SpecConstr can certainly be regarded as a rather specialised
partial evaluator.

Much more closely related is the work of Thiemann (1994) and its
precursor (Thiemann 1993). Thiemann’s goal is precisely the same
as ours, although his context is that of a strict language. Hepresents
a relatively sophisticated abstract interpretation to determine both
argument usage and call patterns. Our work is less technically
complex, but perhaps more practical; Thiemann’s paper never led
to a full-scale implementation.

8. Conclusion

TheSpecConstr transformation is simple to describe, economical
to implement, and devastatingly effective for certain programs. We
are not ready to declare that it should be applied to every program,
because it causes an increase in code size of 3-4%, even when
it does not improve performance and, on occasion, can decrease
performance. Nevertheless, an average runtime improvement of
10%, against the baseline of an already well-optimised compiler,
is an excellent result. We have also identified avenues for further
work that may improve it further.

Furthermore, and perhaps most important, we have advanced the
enterprise of domain-specific optimisation technology. The idea
is this: that ordinary programmers (i.e. not compiler writers)
should be able to build libraries that, through the medium of
programmer-specified rewrite rules, effectively extend the com-
piler with domain-specific knowledge (Peyton Jones et al. 2001).
The streams library is an example of just such a library, and
SpecConstr eliminates a road-block on its usefulness.
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