
2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

SMB 2.2 : Bigger, Faster, Scalier

(Part 1)

David Kruse

Mathew George

Microsoft

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

State of the Protocol

 SMB 2.002

 Simplified command set

 Uniformity (UNICODE, timestamps, etc.)

 Expanded identifier space (UINT64)

 HMAC-SHA256 signing

 Dynamic crediting

 Async notifications for long running requests

 Unrestricted compounding of requests

 Symbolic Link support

 Durable opens for handling disconnects

2

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

State of the Protocol

 SMB 2.100

Frame reduction for common workloads and

WAN

SMB Leasing

Branch Cache extensions

Large MTU support (throughput)

Resilient Handles

3

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Problem Space

• Enable transparent client recover in the presence of

• Network Failure

• Server Failure

• Minimize failover time to reduce application stalls

Availability

• Enable clients to aggregate available bandwidth across adapters
transparently

• Continue to increase efficiency on high bandwidth networks

Performance

• Continue improving user perceived latency when working in a WAN
environment

Traffic Reduction

4

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

SMB 2.2

 Multichannel

 SMB over RDMA

 Scale-Out Awareness

 Persistent Handles

 Witness Notification Protocol

 Clustered Client Failover

 Directory Leasing

 Branch Cache v2

 Support for Storage Features (TRIM, etc)

 5

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

SMB 2.2 – Advancements for WAN

Branch Cache v2 and Directory Leasing

Wednesday: 1:00-1:50

Molly Brown, Mathew George

6

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Architecture Terminology

7

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Architecture(s)

Stand Alone File Server

8

DNS

smbsrv.test.com

• 10.1.1.5

• 10.1.1.6

Client Server

10.1.1.5

10.1.1.6

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Architecture(s)

“Traditional” Clustered File Server

9

DNS

smbsrv.test.com

• 10.1.1.5

• 10.1.1.6

Client Server

10.1.1.5

10.1.1.6

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Architecture(s)

“Scale-Out” Clustered File Server

10

DNS

smbsrv.test.com

• 10.1.1.5

• 10.1.1.6

• 10.1.1.7

Client Server

10.1.1.6

Server

10.1.1.5

Server

10.1.1.7

While data is accessible through any

node, some volatile state is local to a

given node. (File ID, Session ID, etc.)

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Scale-Out Awareness

11

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Scale-Out – Server Requirements

 File system semantics (data integrity, lease/oplock,

byte range locks, etc.) must be coherent

 Persistent portion of FileID’s must be unique across

the cluster (including same-node reboot)

 Session invalidation (PreviousSessionID) must span

nodes to locate and disconnect sessions on

reconnect

 Server returns SMB2_SHARE_CAP_SCALEOUT in

tree connect response to inform client of capability

 Lease keys are not shared across nodes

12

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Scale-Out Client Changes

 Client will “prefer” current node on reconnect after abortive

disconnect, but must be able to fall back to any node

 During reconnect, client may be forced to select new node

after initial connect successful (based on auth or share

failures) to permit stale DNS caching or node eviction

 Client may limit reconnect attempts in large scale-out

scenarios (anti-DOS, app timeout concerns)

 A single Windows clients will operate against a single node at

a time

13

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Multichannel

Mathew George

14

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Multichannel - Goals

 Scalability

Use multiple interfaces if available.

non-homogeneous networks

Use multiple “streams/channels” on the same

interface to get around I/O and CPU limitations

Exploit RSS capabilities in NICs.

Foundation for enabling SMB2 over newer ultra-

high-performance network interconnects.

15

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Multichannel – Goals

 Availability / Network fault tolerance

Make the SMB2 protocol resilient to interface, link

or switch failures.

Move “link awareness” higher up the stack to

enable more intelligent decision making.

Augment NIC teaming at the network layer.

Keep fallback paths ready, prioritize available links.

React quickly to changes to network availability.

 Manageability

 (Nearly) ZERO configuration.

 Interface discovery and capability exchange built in.

16

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Multichannel - Terminology

 A Channel refers to an underlying transport

connection between the client and the server.

 A Session refers to an authenticated user context.

 A Session Binding refers to a logical association

between a Session and a Channel.

N:N relationship between Sessions and Channels

17

TCP TCP RDMA

User A User B Sessions

Channels

Bindings

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Multichannel – Capability Negotiation

 SMB 2.2 clients send client capabilities to

server in the negotiate request.

 Server filters out capabilities it does not

support and returns the effective capabilities

in the negotiate response.

 New negotiate capability to indicate

multichannel support.

18

#define SMB2_GLOBAL_CAP_MULTI_CHANNEL 0x8

typedef struct _SMB2_RESP_NEGOTIATE

{

 USHORT StructureSize;

 USHORT SecurityMode;

 USHORT DialectRevision;

 USHORT Reserved;

 GUID ServerGuid;

 ULONG Capabilities;

 …

 …

} SMB2_RESP_NEGOTIATE, *PSMB2_RESP_NEGOTIATE;

NEGOTIATE

SESSION SETUP

TREE CONNECT

Interface Discovery

NEGOTIATE

SESSION BINDING

….

C
h

a
n

n
e

l
2

C
h

a
n

n
e

l
1

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Multichannel – Interface discovery

 Client establishes initial authenticated session to server

 Client queries for additional interfaces on server using

the new FSCTL_QUERY_NETWORK_INTERFACE_INFO query.

 Server returns list of available interfaces and

capabilities.

 Client matches up server interfaces with local

interfaces and builds an ordered list of “possible

channels”.

19

#define NETWORK_INTERFACE_CAPABILITY_RSS 0x00000001L

#define NETWORK_INTERFACE_CAPABILITY_RDMA 0x00000002L

typedef struct _NETWORK_INTERFACE_INFO {

 ULONG Next;

 ULONG IfIndex;

 ULONG Capability;

 ULONG RssQueueCount;

 ULONG64 LinkSpeed;

 UCHAR SockAddr[1]; // SOCKADDR_STORAGE

} NETWORK_INTERFACE_INFO;

NEGOTIATE

SESSION SETUP

TREE CONNECT

Interface Discovery

NEGOTIATE

SESSION BINDING

….

C
h

a
n

n
e

l
2

C
h

a
n

n
e

l
1

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Multichannel – Establishing Session

Bindings.

 Client establishes additional channels based on the ordered list

of addresses.

 Connect to target address and NEGOTIATE

 Client binds existing sessions to one or more of the newly

established channels.

 New flag in session setup request to indicate session binding.

 SessionId is initialized with UID from existing session.

 Request MUST be signed using the original session signing key.

 Authentication is done using SPNEGO as usual.

 The new session key must be queried and saved on the binding structure.

 If signing is active, this key MUST be used to sign requests for this UID on this channel.

20

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Multichannel – Establishing Session

Bindings

 Session remains active as long as there

is at least one active binding.

 Kerberos re-authentication only needs

to be done on a single channel.

21

#define SMB2_SESSION_FLAG_BINDING 0x00000001

typedef struct _SMB2_REQ_SESSION_SETUP {

 USHORT StructureSize;

 UCHAR Flags;

 UCHAR SecurityMode;

 ULONG Capabilities;

 ULONG Reserved;

 USHORT SecurityBufferOffset;

 USHORT SecurityBufferLength;

 UINT64 PreviousSessionId;

 UCHAR Buffer[1];

} SMB2_REQ_SESSION_SETUP;

NEGOTIATE

SESSION SETUP

TREE CONNECT

Interface Discovery

NEGOTIATE

SESSION BINDING

….

C
h

a
n

n
e

l
2

C
h

a
n

n
e

l
1

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Multichannel – Sequencing and

Correctness

 Classes of I/O operations

Operations with “exactly once” semantics

Replay detection is required.

State changing CREATE operations, byte range locks.

Operations resulting in “write-write” conflicts.

Full sequencing and replay detection is not required.

A “barrier” semantic can handle these conflicts.

Operations which are safe to replay.

Non-modifying, non-state changing. (read, queries,

enumeration.)

 REPLAY flag added to the protocol(*)

22

(*) - Upcoming change not in

current builds or initial SMB 2.2

protocol documentation.

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Multichannel – Lock Sequence

Numbers

 Introduced in SMB 2.1 (resilient handles)

 Consists of a 28-bit bucket# and a 4-bit sequence#.

 Windows Client / Server only supports 64 buckets. (6 bits)

 Sequence# is incremented when the bucket is re-used.

 Parallel (un)lock requests will use distinct bucket numbers.

 Server remembers lock sequence numbers associated with

active byte-range locks to detect lock replay.

23

typedef struct _SMB2_REQ_LOCK {

 USHORT StructureSize; // = sizeof(SMB2_REQ_LOCK)

 USHORT LockCount;

 ULONG LockSequence; // bits 0..3 seq#, bits 4..9 bucket#

 SMB2_FILEID FileId; // Identifier of the file being (un)locked

 SMB2_LOCK Locks[1]; // Array of (LockCount) lock structures

} SMB2_REQ_LOCK, *PSMB2_REQ_LOCK;

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Multichannel – CREATE Replay

24

CREATE[1] (GUID1)

CREATE[1] (replay, GUID1)

C
h

a
n

n
e

l
1

C
h

a
n

n
e

l
2

Client detects channel failure

CREATE[1] (replay,GUID1)

STATUS_FILE_NOT_AVAILABLE

STATUS_SUCCESS

CLIENT

C
h

a
n

n
e

l
1

C
h

a
n

n
e

l
2

SERVER

CREATE replay using Create-GUIDs
 Client supplies a handle ID (GUID)

to the server with every create.

 Unique per handle, per client.

 Unique per handle per share.

 Server can detect replays by

looking up the GUID.

 New durability V2 create context.

F

il
e

s
y
s

te
m

typedef struct {

 ULONG Timeout; // msec

 ULONG Flags;

 UINT64 Reserved; // MUST be zero.

 GUID CreateGuid; // client supplied ID

} SMB2_DURABLE_HANDLE_REQUEST_V2;

Server detects channel failure

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Multichannel – Channel Epoch

Numbers(*)

25

WRITE[1] (epoch = 5)

WRITE[1] (replay, epoch = 6)

C
h

a
n

n
e

l
1

C
h

a
n

n
e

l
2

Client detects channel failure

5

6

6

6

E
p

o
c
h

5

6

6

6

E
p

o
c
h

READ[2] (epoch = 6)

STATUS_SUCCESS

WRITE[1] (replay, epoch = 6)

STATUS_FILE_NOT_AVAILABLE

STATUS_SUCCESS

CLIENT

C
h

a
n

n
e

l
1

C
h

a
n

n
e

l
2

SERVER

WRITE replay using channel epoch  Lightweight compared to full replay detection.

 Guarantees that all previous “instances” of an

I/O are drained before the replay is executed.

 Client maintains 16-bit channel epoch number.

 Incremented on a network failure.

 Sent to server via unused Status field.

 Server fails “state changing” “non-replay”

requests with stale epoch numbers.

 Server fails “state changing” “replay” requests

when there are outstanding operations with

older epoch numbers.

 New error - STATUS_FILE_NOT_AVAILABLE
avoids blocking on the server and tells client

to retry.

 Server can do epoch check at “handle”

granularity.

 (*) – Upcoming change. Not in current builds

or initial SMB 2.2 protocol documentation.

Server detects channel failure

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Multichannel – Guidelines for Channel

Selection & Load Balancing

 If multiple interfaces with similar characteristics are available,

establish channels on each interface.

 For each interface, establish multiple channels if the NIC is

RSS capable or is 10 Gbit or higher throughput.

 Server can do coarse grained load balancing by varying credits

on each channel.

 Client can load balance using

 round robin

 Shortest queue length.

 Processor / NUMA-node affinity based scheduling.

 Client may wait for sufficient data transfer before going

multichannel.

26

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

SMB 2.2 Client 10GbE Interface Scaling

27

0

500

1000

1500

2000

2500

3000

3500

4000

4500

512 1024 4096 8192 16384 32768 65536 131072 262144 524288 1048576

M
B

/s
e
c

IO Size (bytes)

SMB 2.2 Client Interface Scaling - Throughput

1 x 10GbE 2 x 10GbE 3 x 10GbE 4 x 10GbE

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

SMB 2.2 – Advancements in Server

Application Performance

Thursday, 9:30-10:20

Dan Lovinger

28

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

SMB 2.2 over RDMA

These go to eleven.

Today: 4:05-4:55

Tom Talpey, Greg Kramer

29

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Support for Advanced Storage Features

30

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Offload Write

with Token
Results Token

Offload

Read

File Copy Offload

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

File Copy Offload & Trim Support

 SMB 2.2 adds support for

 FSCTL_OFFLOAD_READ, FSCTL_OFFLOAD_WRITE

 Provides copy offload across different volumes on different file

servers

 FSCTL_FILE_LEVEL_TRIM

 Allows a file system to tell an underlying storage device that the

contents of specified sectors are no longer important

FileFsSectorSizeInformation

Returns both physical and logical volume sector info

 See NealCh’s “Performance Enhancements in NTFS” talk

from yesterday for more details

32

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Pulling it Together

 Demo – Jose Barreto

33

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Questions?

34

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

SMB 2.2 : Bigger, Faster, Scalier

(Part 2)

David Kruse

Mathew George

Microsoft

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

SMB2 Continuous Availability

Persistent Handles

36

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Continuous Availability – Server

Application Expectations

 Server apps expect to be able to always access data on a

continuously available file server / share.

 Transient network failures or server failures are

completely hidden from the application.

 Filesystem client is expected to transparently recover

disconnected handles and retry I/O operations.

 The application sees a small pause in the I/O, but no errors.

 I/O operations are bound by a specific timeout

 Application requested OR

 Server configured.

 Reliability on par with direct-attached storage / SAN.

37

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Persistent Handles – The road to

Continuously Available SMB

38

Durability Resilience Persistence

SMB2 Protocol Revision 2.0
Windows Server 2008,

Windows Vista

2.1
Windows Server

2008 R2, Windows 7

2.2
Windows 8

Strong guarantees on handle availability

and I/O timeouts?

No
(Best effort. Relies on

H leases.)

Yes Yes

Resilient to network glitches? Yes Yes Yes

Resilient to server failures? No No Yes
(Shared state store)

Resilient to failures during CREATE? No No Yes

Transparent to applications? Yes No Yes.
(Server configured

or app specified

timeouts.)

Can client cache data (if it has a lease)? Yes. No.
(except for exclusive

opens)

Yes.

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Persistent Handles – Capability

Negotiation.

 SMB 2.2 clients negotiate the new “persistent

handle” capability.

39

#define SMB2_GLOBAL_CAP_PERSISTENT_HANDLES 0x10

typedef struct _SMB2_RESP_NEGOTIATE {

 USHORT StructureSize;

 USHORT SecurityMode;

 USHORT DialectRevision;

 USHORT Reserved;

 GUID ServerGuid;

 ULONG Capabilities;

 …

} SMB2_RESP_NEGOTIATE;

NEGOTIATE

SESSION SETUP

TREE CONNECT

….

 Check for the “continuous availability”

capability in the tree connect response.
#define SMB2_SHARE_CAP_CONTINUOUS_AVAILABILITY 0x10

#define SMB2_SHARE_CAP_CLUSTER 0x40

typedef struct _SMB2_RESP_TREE_CONNECT {

 USHORT StructureSize;

 UCHAR ShareType;

 UCHAR Reserved;

 ULONG ShareFlags;

 ULONG Capabilities;

 ULONG MaximalAccess;

} SMB2_RESP_TREE_CONNECT;

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Persistent Handles – Durability V2

Create Context

 Clients request persistent handles on continuously available

shares using the new durability V2 create context.

 Clients can request optional timeout for which the server must reserve

the handle.

 Clients generate a unique 128-bit ID per handle (unique per share)

 Clients set the “persistent” flag.

 Windows clients request persistence for

 File handles opened for read, write, execute or delete access.

 Directory handles opened for delete access or disposition != FILE_OPEN

40

#define SMB2_DHANDLE_FLAG_PERSISTENT 0x2

typedef struct _SMB2_DURABLE_HANDLE_REQUEST_V2 {

 ULONG Timeout; // in milliseconds. Value of ZERO indicates “use server default”.

 ULONG Flags;

 UINT64 Reserved; // MUST be zero.

 GUID CreateGuid; // client supplied unique ID.

} SMB2_DURABLE_HANDLE_REQUEST_V2;

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Persistent Handles – Durability V2

Create Context
 Servers indicate to the client that persistence was granted by

setting the persistent flag in the durable handle V2 response.

 Windows Servers will grant persistence for

 All handles opened for delete access.

 All potentially state changing creates. (e.g. CREATE_NEW, OVERWRITE, OVERWRITE_IF)

 File handles opened for read, write or execute.

 Granted timeout is decided by server based on the client supplied

timeout and the server configured defaults / limits.

 Client uses the timeout as a hint to determine how long to retry I/O.

41

#define SMB2_DHANDLE_FLAG_PERSISTENT 0x2

typedef struct _SMB2_DURABLE_HANDLE_RESPONSE_V2 {

 ULONG Timeout; // timeout (ms) granted by the server.

 ULONG Flags;

} SMB2_DURABLE_HANDLE_RESPONSE_V2, *PSMB2_DURABLE_HANDLE_RESPONSE_V2;

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Persistent Handles – Server

Guarantees

 The handle must be “reserved” for a disconnected client up to the

timeout in the durable handle V2 response.

 All modifications made via the handle are persisted to stable

storage before the I/O is completed.

 While a client is disconnected, all state changing operations

affecting the file are blocked until the reservation has expired or

the client has “resumed” the handle.

 All byte range locks taken on the handle are persisted by the

server across network / server failures.

 Server must implement the correct replay semantics for state

changing operations.

42

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Persistent Handles – Create

Replay vs. Resume

 Replay
 Client did not get a response to its create request.

 Client sets the replay flag in the SMB2 header and attaches a durable handle

V2 request with the same CreateGUID used in the original create.

 Resume

 Client is attempting to reconnect to a previously open handle

 The attaches a durable handle V2 reconnect create context with the same

CreateGUID used in the original create.

 Server returns the same persistent FileID, but different volatile FileID.

43

#define SMB2_DHANDLE_FLAG_PERSISTENT 0x2

typedef struct _SMB2_DURABLE_HANDLE_RECONNECT_V2 {

 SMB2_FILEID FileId; // SMB2 FID returned by the server when opening the file.

 GUID CreateGuid; // client supplied unique ID for this handle.

 ULONG Flags;

} SMB2_DURABLE_HANDLE_RECONNECT_V2;

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Persistent Handles – Replay vs.

Resume (Network Failure)

44

CREATE(GUID1)

NEGOTIATE

TREE CONNECT

….

RESUME

SESSION SETUP

CREATE(resume,GUID1)

STATUS_SUCCESS

CREATE[1] (GUID1)

NEGOTIATE

TREE CONNECT

….

REPLAY

SESSION SETUP

CREATE[1] (replay, GUID1)

STATUS_SUCCESS

STATUS_SUCCESS

….

C
lie

n
t

C
lie

n
t

S
e

rv
e

r
N

o
d

e

S
e

rv
e

r
N

o
d

e

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Persistent Handles – Replay vs.

Resume (Server Node Failure)

45

Restore Open

State

CREATE[1] (GUID1)

NEGOTIATE

TREE CONNECT

….

SESSION SETUP

CREATE[1] (replay, GUID1)

STATUS_SUCCESS

S
e

rv
e

r
N

o
d

e
 A

S
e

rv
e

r
N

o
d

e
 B

S
h

a
re

d
 S

ta
te

S
to

re

Save Open

State

C
lie

n
t

File blocked until timeout or

client resumes the Open.

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Persistent Handles – State associated

with an “Open”.

 All new opens which can potentially affect state must be blocked

until clients have a chance to “resume” existing handles.

 Windows implementation will block all opens except for read-attribute

opens.

 Side effect – prevents most H or W lease breaks.

 All other operations which cause W,H lease breaks are blocked.

 parent directory renames, parent directory deletion.

 New error codes to indicate to the client a transient failure. Client

is responsible for retrying the failed operation.
 STATUS_SERVER_UNAVAILABLE, STATUS_FILE_NOT_AVAILABLE

 Non SMB 2.2 aware clients will see STATUS_SHARING_VIOLATION error.

 Delete disposition state must be preserved on server.

 Byte range lock state must be preserved on the server.

46

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Persistent Handles – Lease State

 Handle leases are preserved by virtue of handle reservation.

 Exclusive (W) leases are preserved via blocking new creates from

other clients.

 R leases need not be preserved

 Client can recover from a loss of R lease by simply discarding

cached data.

 The server is not required to explicitly track the lease state across

server failovers.

 The client is expected to re-request its lease when resuming its

persistent opens.

47

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Persistent Handles – Lease State

Validation using “Lease Epochs”

 A epoch/sequence number added to the protocol to accurately

track lease state changes.

 Incremented by the server every lease upgrade or downgrade.

 Used by the client to detect unexpected lease state changes.

 New lease V2 create context.

48

#define SMB2_LEASE_FLAG_PARENT_LEASE_KEY_SET 0x04

typedef struct _SMB2_ECP_LEASE_v2 {

 GUID LeaseKey; // Unique ID which identifies owner of the lease.

 DWORD LeaseState; // The kind of lease the client is requesting

 DWORD Flags; // Optional: flags.

 INT64 LeaseDuration; // Not used. Must be ZERO.

 GUID ParentLeaseKey; // Unique ID which identifies the lease owner for the parent

 // directory.

 USHORT Epoch; // Current lease epoch number.

 USHORT Reserved;

} SMB2_ECP_REQUEST_LEASE_v2, // Client->Server.

 SMB2_ECP_GRANTED_LEASE_v2; // Server->Client.

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Persistent Handles – Lease State

Validation on Client

49

New

Lease

State 

R RH RWH None

None ∆epoch=0 : Invalid

∆epoch>0 : Upgrade

∆epoch=0 : Invalid

∆epoch>0 : Upgrade

∆epoch=0 : Invalid

∆epoch>0 : Upgrade

R ∆epoch=0 : No change

∆epoch>0 : Purge cache

∆epoch=1 : Upgrade

∆epoch>1 : Upgrade &

purge cache.

∆epoch=0 : Invalid.

∆epoch=1 : Upgrade

∆epoch>1 : Upgrade &

purge cache.

∆epoch=0 : Invalid

∆epoch>0 :

Purge cache

RH Not allowed. ∆epoch=0 : No change

∆epoch>0 : Purge cache

∆epoch=1 : Upgrade

∆epoch>1 : Upgrade &

purge cache.

∆epoch=0 : Invalid

RWH Invalid Invalid ∆epoch!= 0 : Invalid

 CREATE request typically retains or upgrades lease.

 OK to lose (and regain) R lease.

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Persistent Handles – Lease State

Validation on Client

50

 CREATE-RESUME request typically retains existing lease state.

 OK to lose R leases.

New

Lease

State

R RH RWH None

None Invalid Invalid Invalid

R ∆epoch=0 : No change

∆epoch>0 : Purge cache
Invalid Invalid ∆epoch>0 :Purge cache

∆epoch=0 :Invalid

RH Invalid ∆epoch=0 : No change

∆epoch>0 : Purge cache

Invalid Invalid

RWH Invalid Invalid ∆epoch=0 : No change

∆epoch>0 : Invalid

Invalid

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Persistent Handles – Handling Lease

breaks : Network Disconnects

51

CREATE(GUID1)

CREATE(resume, GUID1)

Success (RWH lease)

Server

C
lie

n
t
A

C
lie

n
t
B

disconnect

Client A reconnect

CREATE(GUID2)

Failed lease break.

Success (RWH lease)

Lease break (RWH -> RH)

Success (RH lease)

STATUS_PENDING

Lease break ack

 Server holds the lease break

until the client reconnects

and resumes its Open.

 Waits for up to the durable

handle v2 timeout for the client

to resume the handle;

 Then waits for up to the oplock

break timeout for the client to

acknowledge the break.

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Persistent Handles – Handling Lease

breaks : Server Failures

52

CREATE(GUID1)

CREATE(resume, GUID1)

Success (RWH lease)

Server

Node A C
lie

n
t
A

C
lie

n
t
B

Client A reconnect

CREATE(GUID2)

Success (RWH lease)

Lease break (RWH -> RH)

Success (RH lease)

STATUS_PENDING

Failed lease break ack.

Server

Node B

Client B reconnect

CREATE(GUID2,replay)

STATUS_FILE_NOT_AVAILABLE

CREATE(GUID2,replay)

Lease break (RWH -> RH)

Lease break ack.

 Server guarantees that any

operations which break W or H

leases are blocked.

 Clients request prior lease state

when resuming its Opens.

 Server MUST grant H and

W lease if requested.

 R lease may be denied

forcing the client to purge

cached data.

 When the operation which

caused the lease break is

replayed a new lease break is

initiated by the server.

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Should all Continuously Available

Opens be Persistent?

 Persistent handles consume more server resources to

keep persistent/volatile state

 Sharing/Access modes and associated fencing info.

 Byte range locks

 Replay caches

 Opens which do not impact sharing, lease state or

filesystem metadata need not be persistent.

 Server “forgets” these opens when client disconnects.

 Client re-opens the file before next use.
 Best-effort.

 No hard guarantees or reservations.

53

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Should all Continuously Available

Opens be Persistent?

Metadata opens (READ_ATTRIBUTE)

Do not impact sharing, lease state or filesystem

metadata. No fencing required.

 Server can “forget” these opens when client

disconnects.

Client re-opens the file before next use.

Best effort without any hard guarantees or reservations.

54

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Should all Continuously Available

Opens be Persistent?

Directory enumeration handles

Have state (enumeration position and query template.)

Weak guarantees when directory content is changing.

Client re-opens directory, resets query template,

restarts enumerations and skips entries.

Tricky when directory content is changing.

Change notifications

We cheat ! STATUS_NOTIFY_ENUM_DIR

55

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Witness Notification Protocol

56

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Goals

 Accelerate client detection/notification of a server-

side resource failure

 Notify client when relevant server resources have

come online and ready for operation

 Provide a communication channel with the client for

load balancing

57

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Overview

 Optional additional service

 RPC based interactions

 Used in clustered environments for Continuously

Available shares

 CA will function without witness, but witness should

accelerate failover as well as enable new functionality

58

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Witness Discovery

DWORD WitnessrGetInterfaceList(

 [in] handle_t Handle,

 [out] WITNESS_INTERFACE_LIST ** InterfaceList);

 Client requests list of interfaces from the file server

node it is connected to

 Interfaces provide list of 3rd party “witness” that can

provide notifications if this server interface

experiences a failure

59

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Witness Monitoring

DWORD WitnessrRegister(

 [in] handle_t Handle,

 [out] PCONTEXT_HANDLE_TYPE * ppContext,

 [in] [string] [unique] WCHAR * NetName,

 [in] [string] [unique] WCHAR * IpAddress,

 [in] [string] [unique] WCHAR * ClientComputerName);

 Client registers for resources of interest (network names, ip

addresses)

 Client can unregister resources it is no longer interested in,

or register additional resources as they become relevant

 Server returns registration key on successful register. Key is

used for unregister operations.

60

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Witness Notifications

DWORD WitnessrAsyncNotify(

 [in] handle_t Handle,

 [in] PCONTEXT_HANDLE_TYPE_SHARED pContext,

 [out] RESP_ASYNC_NOTIFY * pResp);

 Client posts one or more async notification requests

 If a resource for which the client has registered

becomes unavailable or available, notification is

returned to the client.

61

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Client Operation

 On TREE_CONNECT to a continuously available

share:

Register witness notification for netname (if not

already monitored)

Register witness notification for IP(s)

62

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Client Operation

 On notification of NetName offline

Disconnect/cancel pending operations and

prepare for reconnect

 On notification of IP offline

Disconnect/cancel operations on that connection.

 If multichannel, retry on alternate channel

 If not multichannel, prepare for reconnect

 In both cases, start timer to retry if no online

received within acceptable timeout (for witness

server failure cases)
63

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Client Operation

 On notification of NetName online

 Initiate reconnect

 If unsuccessful, enter normal reconnect retry loop

 If successful, re-establish handles and retry

pending operations.

 On notification of IP online

 Same as above

Potentially rerun multichannel selection algorithm

64

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Load Balancing for Scale-Out

 Witness provides mechanism to request a client move from

one interface to another

 For a scale-out server, local administrative actions permit

dynamically moving clients between nodes.

 On move, client will:

 Let existing operations complete

 Disconnect

 Connect to new target. If fails, reconnect to any available

node.

 Re-establish handles and resume operation

65

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Clustered Client Failover

66

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Scenario

 Highly Available application has a data file open

exclusively on the file server

67

Client Node 1

Client Node 2

Application

File Server

Open

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Scenario

 Client Node fails. Server holds reservation for file as

client has disconnected.

68

Client Node 1

Client Node 2

File Server

Open

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Scenario

 Application is relaunched on second node

69

Client Node 1

Client Node 2

Application

File Server

Open

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Scenario

 Application attempts to open file, server rejects it as

file is reserved for original client for timeout period.

70

Client Node 1

Client Node 2

Application

File Server

Open

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Goals

 Optionally identify an open as associated with an

instance of an application

 When a highly available application fails over, use of

the instance identifier by a new client for a given file

allows for accelerated teardown of existing opens to

prevent delay in access

71

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Instance Create Context

typedef struct _SMB2_CREATE_APP_INSTANCE_ID {

 //

 // This must be set to the size of this structure.

 //

 USHORT Size;

 //

 // This must be set to zero.

 //

 USHORT Reserved;

 //

 // The caller places a GUID that should always be unique

 // for a single instance of the application.

 //

 GUID AppInstanceID;

} SMB2_CREATE_APP_INSTANCE_ID;

 App instance is

provided by application

 Application guarantees

that instance ID is

consistent as application

moves

72

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Server Side Invalidation

If (AppInstance Create Context present)

 If (User has access to the underlying file)

 If (Open exists with matching instance ID)

 Close previous open

 End If

 End If

End if

73

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Application Requirements

 Application provides instance identifier (GUID) on a

per-process or per-open basis

 Application guarantees that instance identifier

remains consistent as application moves between

client nodes

 Application guarantees single instance of application

is running within the cluster

74

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Windows Server 8 and SMB 2.2 –

Advancements in Management

Capabilities

Is there life beyond NetShareAdd?

Wednesday, 3:05-3:55

Jose Barreto

75

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Pulling it Together

 Demo – Claus Joergenson

76

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Questions?

77

2011 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved.

Thank you!

78

